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OpenState is a stateful pipeline design (originally developed as an OpenFlow
extension), that allows packets to be forwarded on the basis of “flow-states”,
maintained and updated by the fast path itself as a consequence of packet-
level events (i.e. table match) and timers. The demo presents an application for
failure resiliency that exploits the fast adaptation of the forwarding behavior in
the data path. This application provides i) a programmable detection
mechanism based on switches’ periodic link probing and ii) a fast reroute of
traffic flows even in case of distant failures, regardless of controller
availability. It can guarantee short (i.e. few ms) failure detection and
recovery delays, with a configurable trade off between overhead and
failover responsiveness.

Introduction

OpenState Architecture

openstate.p4

An OpenState equivalent design can be obtained in P4 by combining:
• Registers (stateful memories);
• Hash value generators (functions that operate on a stream of bytes from a

packet to produce an integer);
• Definition of new header types, tables and actions.

Control flow at a glance:
• Hash generators produce a index to access registers
• State lookup → copy from registers to packet metadata
• State update → copy from action parameters to registers
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Steps:
1) “Lookup-scope” used to extract a “flow key” from packet headers
2) State table queried using the flow key

– Return 0 (default state) if no entry is found
3) Match on state metadata
4) Set-state action to update/insert values in the state table
5) “Update-scope” can be defined to perform cross-flow state updates
6) Packet sent to the next stage in the pipeline

Key State Timeouts
A,B,w,z 1 Idle, hard, rollback state
… … …
… … …

* (any) 0 (default) n/a

Key: Equivalent to an exact match performed always on the same fields 
defined by the lookup/update scope.

State: All flows start with state 0 (last row). Entries are populated by means 
of set-state action or by the controller.

Timeouts: Similarly to OpenFlow, idle & hard timeouts can be defined 
for each entry.  A programmer can optionally specify a “rollback state”
(non default) to be used when a timeout expires.

State table

1) Normal conditions 3) Packets bounced back in case of  failure 4) Periodic probing to check failed path

Path pre-planning: primary and backup paths for each possible failure 
scenario are pre-computed and provisioned to switches at boot time.

Tag based forwarding: packet labels are used to distinguish between 
different forwarding behaviors, in order to perform:
• Normal forwarding (tag=0)
• Heartbeat-based link-level failure detection (tag=HB)
• Switch-to-switch failure signaling (tag=Fi)
• Probing to check path availability after a failure (tag=Pi)

Guaranteed failover delay: depends on target’s timestamp resolution.

Minimize packet reordering: timeout-based flowlet-aware mechanism to 
postpone the path failover up to the expiration of a burst of packets. 
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2) Heartbeat-based failure detection*

* As long as packets are received from a given port, that port can be
used to reliably transmit other packets. When no packets are
received for a given interval, a node can request its neighbor to
send an “heartbeat”. If no reply is received within an interval, the
port is declared down.
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