
http://www.openstate-sdn.org

OpenState is a stateful pipeline design (originally developed as an OpenFlow
extension), that allows packets to be forwarded on the basis of “flow-states”,
maintained and updated by the fast path itself as a consequence of packet-
level events (i.e. table match) and timers. The demo presents an application for
failure resiliency that exploits the fast adaptation of the forwarding behavior in
the data path. This application provides i) a programmable detection
mechanism based on switches’ periodic link probing and ii) a fast reroute of
traffic flows even in case of distant failures, regardless of controller
availability. It can guarantee short (i.e. few ms) failure detection and
recovery delays, with a configurable trade off between overhead and
failover responsiveness.

Introduction

OpenState Architecture

openstate.p4

An OpenState equivalent design can be obtained in P4 by combining:
• Registers (stateful memories);
• Hash value generators (functions that operate on a stream of bytes from a

packet to produce an integer);
• Definition of new header types, tables and actions.

Control flow at a glance:
• Hash generators produce a index to access registers
• State lookup → copy from registers to packet metadata
• State update → copy from action parameters to registers

Application Example: Failure Recovery

Politecnico di Milano
A. Capone, C. Cascone, L. Pollini , D. Sanvito

P4 Implementation of a Stateful Data Plane
and its Application to Failure Recovery

Steps:
1) “Lookup-scope” used to extract a “flow key” from packet headers
2) State table queried using the flow key

– Return 0 (default state) if no entry is found
3) Match on state metadata
4) Set-state action to update/insert values in the state table
5) “Update-scope” can be defined to perform cross-flow state updates
6) Packet sent to the next stage in the pipeline

Key State Timeouts
A,B,w,z 1 Idle, hard, rollback state
… … …
… … …

* (any) 0 (default) n/a

Key: Equivalent to an exact match performed always on the same fields
defined by the lookup/update scope.

State: All flows start with state 0 (last row). Entries are populated by means
of set-state action or by the controller.

Timeouts: Similarly to OpenFlow, idle & hard timeouts can be defined
for each entry. A programmer can optionally specify a “rollback state”
(non default) to be used when a timeout expires.

State table

1) Normal conditions 3) Packets bounced back in case of failure 4) Periodic probing to check failed path

Path pre-planning: primary and backup paths for each possible failure
scenario are pre-computed and provisioned to switches at boot time.

Tag based forwarding: packet labels are used to distinguish between
different forwarding behaviors, in order to perform:
• Normal forwarding (tag=0)
• Heartbeat-based link-level failure detection (tag=HB)
• Switch-to-switch failure signaling (tag=Fi)
• Probing to check path availability after a failure (tag=Pi)

Guaranteed failover delay: depends on target’s timestamp resolution.

Minimize packet reordering: timeout-based flowlet-aware mechanism to
postpone the path failover up to the expiration of a burst of packets.

References
[1] G. Bianchi, M. Bonola, A. Capone, C. Cascone, “OpenState: programming platform-independent stateful OpenFlow applications

inside the switch,” SIGCOMM CCR, April 2014.
[2] S. Pontarelli, G. Bianchi, M. Bonola, A. Capone, C. Cascone, “Stateful OpenFlow: Hardware Proof of Concept”,

in HPSR 2015, Budapest, July 2015.
[3] C. Cascone, L. Pollini, D. Sanvito, A. Capone. “Traffic management applications for stateful SDN data plane”,

in EWSDN 2015, September 2015.
[4] A. Capone, C. Cascone, A. Q.T. Nguyen, and B. Sansò, “Detour Planning for Fast and Reliable Failure Recovery in SDN with

OpenState”, in DRCN 2015, March 2015.

2) Heartbeat-based failure detection*

* As long as packets are received from a given port, that port can be
used to reliably transmit other packets. When no packets are
received for a given interval, a node can request its neighbor to
send an “heartbeat”. If no reply is received within an interval, the
port is declared down.

any n/adefault
………
………

TimeoutsStateKey

.. ……
………
………

TimeoutsActionsMatch

Key extractor
(update-scope)

pkt
+ state

set_state(new_state, timeouts)

Key extractor
(lookup-scope)

pkt
pkt
+ actions

State table Flow table
1

2 3

4

5

6

Beba
BEhavioural BAsed forwarding

http://github.com/OpenState-SDN/openstate.p4

UP: need
heartbeat
(default)

UP:
heartbeat
requested

UP: Wait

DOWN:
need probe

DOWN:
probe sent

any packet
<set_tag(HB), fwd(outport)>

lookup-scope=[metadata]
update-scope=[metadata]

hard_timeout=δ7

any packet
<set_tag(Fi), fwd(detour or inport)>

<set_tag(Pi), fwd(outport)>

any packet
<set_tag(Fi), fwd(detour or inport)>

hard_timeout=δ6

any packet
<fwd(outport)>

hard_timeout=δ5

“Any packet
arriving at outport”

any packet
<fwd(outport)>

Packets
State updates

Legend:

Fast
reroute
FSM

Failure
detection

FSM Output port(s)Input port(s)

Fault
signaledNormal

(default)
Detour
enabled

Need
probe

Fault
resolved

tag=Fi
<fwd(detour)>

idle_to=δ1 or
hard_to=δ2

tag=0
<fwd(primary)>

tag=Fi
<fwd(detour)>

tag=0
<fwd(primary)>

hard_to=δ5

tag=0
<set_tag(Fi), fwd(detour)>

tag=0
<set_tag(Fi), fwd(detour)>
<set_tag(Pi), fwd(primary)>

tag=0
<set_tag(Fi), fwd(detour)>idle_to=δ3 or

hard_to=δ4

“Probe packet
coming back”

lookup-scope=[eth_src, eth_dst]
update-scope=[eth_src, eth_dst]

Pipeline

Failure detection FSMFast reroute FSM

www.beba-project.eu

1 2 3 4 5

7 8

6
PKT PKT

drop

1 2 3 4 5

7 8

6
PKT

HB PKT

//

PKT PKTHB PKT

HB PKTPKT

1 2

7 8

PKT

state = 0

primary path

3 4 5 6 1 2 3 4 5

7 8

6
PKT P4 PKT

timeout
state àP4

F4 PKT

//
drop

1 2 3 4 5

7 8

6
PKT

P4 PKT

match tag P4
state à 0

drop

F4 PKT

PKT

PKT

1 2 3 4 5

7 8

6
PKT

F4 PKT

PKT

//
detour 4

1 2 3 4 5

7 8

6
PKT

F4 PKT

match tag F4
state àF4

//
port down

