POLITECNICO MILANO 1863

Towards traffic classification offloading to stateful SDN data planes Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone

Dipartimento di Elettronica, Informatica e Bioningegneria, Politecnico di Milano, Italy

Bologna, 3 Luglio 2017 NEAF-IO - Workshop on NEtwork Accelerated FunctIOns

HTTPS and Encryption

- Encrypted traffic is growing
 - North America: ~40%
 - Europe: >60%
- HTTPS
 - from sensitive transactions to HTTPS «everywhere»
- Impact of Encryption on DPIs
 - Payload not inspectable, only headers and in clear text

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Motivation

- Propose a solution to optimize DPI (or other classifier) usage from the network
- Classify the same amount of traffic with less computational resources
- No direct classification into the network element

Solution - Idea

Scheme to filter and collect statistics directly on the data plane of a SDN network

- Standard OpenFlow Implementation possible but not scalable
- Stateful data plane (Open Packet Processor) is the right option to program a stateful application within the datapath with no overload on the controller

Related works

- - Several works evaluated the effect of traffic sampling on classification accuracy ([1] [2] [3])
 - Most optimization operate on the DPI implementation itself
 - [4] propose a stateful SDN approach (based on OpenState [5]) to make offloading. Their approach is not completely decoupled from the controller

We propose an offloading mechanism independent from the classifier (that can be DPI or Machine Learning -based) and completely decoupled from the controller

[1] S. Fernandes et al. "Slimming down deep packet inspection systems." INFOCOM Workshops 2009, IEEE. IEEE, 2009.
 [2] N. Cascarano et al. "Improving cost and accuracy of DPI traffic classifiers." Proceedings of the 2010 ACM Symposium on Applied Computing. ACM, 2010.

- [3] L. Bernaille et al." Early application identification." Proceedings of the 2006 ACM CoNEXT conference. ACM, 2006.
- [4] T. Zhang et al. "On-the-fly Traffic Classification and Control with a Stateful SDN approach."

[5] G. Bianchi *et al.* "OpenState: programming platform-independent stateful openflow applications inside the switch." ACM SIGCOMM Computer Communication Review 44.2 (2014): 44-51.

Stateful Data Plane

- From dumb to "local smartness" on switch
- Memory associated to flow on switch
- History-dependent decision on flow

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Open Packet Processor (OPP)

- OpenFlow stateful extension
- Flow states and flow registers
- Extended Finite State Machine model
 - States: Forwarding policy
 - Transitions: packet-level events, time-based events, conditions

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

POLITECNICO MILANO 1863

6

Proposed application

- Tables pipeline:
 - 1. Stateless table: select output port
 - 2. Stateful table: filtering, DPI forwarding, statistics collection
- Keep memory for each flow (e.g. TCP connections)

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Topology Example 8

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

TCP State Machine

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Table configuration

10

Header Field Extractors

HF[0] = PKT.TS

HF[1] = PKT.LEN

Flow Data Variables

FDV[0]=pkt_cnt
FDV[1]=TS_start
FDV[2]=TS_stop
FDV[3]=byte_cnt
FDV[4]=flow dir

Global Data Variables

```
GDV[0]=CTS_thresh
GDV[1]=STC_thresh
GDV[2]=0
```

Conditions

```
C[0]: FDV[0] \ge GDV[0]?
```

```
C[1]: FDV[0] \ge GDV[1]?
```

```
C[2]: FDV[4]>GDV[2]?
```

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Results

Domestic trace (12h trace of domestic traffic)

- Classification Accuracy
- Filtering impact in terms of packets analyzed by the DPI
- Filtering impact in terms of offloaded bytes from the DPI

CAIDA trace from 10GbE backbone link (7.2TB of traffic with 56M TCP connections):

• Filtering impact

Results – Classification Accuracy

1009080 70Accuracy [%] 60 Negligible loss of classified flows 504010 pkts: 100% accuracy 30 BOTH20STC10CTS0 2 12 13 14 15 16 17 18 19 20 21 1 3 Packets per flow sent to DPI

- BOTH: filtering both direction
- STC: filtering the Server-To-Client direction + 1 packet in the other
- CTS: filtering the Client-To-Server direction + 1 packet in the other

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

POLITECNICO MILANO 1863

12

Results – Filtering Impact (Packets) 13

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Results – Filtering Impact (Bytes)

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

POLITECNICO MILANO 1863

14

- Only BOTH case (most promising in terms of accuracy)
- Threshold bigger than previous evaluation (also with bigger threshold we can reach high traffic offloading)

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

In-switch statistics collection

Despite the DPI's lack of complete visibility of flows, the switch is still able to compute useful flow metrics such as:

- Start and end timestamp of flows
- Number of packets per flow per direction
- Byte quantity per flow per direction

Conclusion (1)

We propose a scheme to optimize DPI usage exploiting data plane programmability

With this solution we try to separate:

- Filtering
- Classification

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, Daniele Moro, Antonio Capone -

Conclusion (2)

Extensive numerical evaluation of the solution showed that our proposal can lead to:

- Zero-classification accuracy loss
- Huge reduction in traffic volume and number of packets to the DPI
- Offload the DPI dramatically reduce the required computational power

The solution is flexible and programmable:

- We can disable the DPI forwarding and make only in-switch statistics collection
- We can integrate feedback from DPI to:
 - provide application-aware forwarding
 - further lowering the filtering threshold
- System can be integrated with ML classifier or other type of classifier

Future work/Open discussion

- Computation of other flow-related statistics on network element
- Other stateful application that we can offload down to the data plane (e.g. flow sampling to collect statistics)
- Stateful data plane SDN network:
 - Role of the controller
 - Amount of "smartness" in the switch
- Boundaries between offloading tasks to the network and leave the work to dedicated middleboxes or end-hosts

daniele1.moro@mail.polimi.it

THANKS for your attention ANY QUESTIONS?

daniele1.moro@mail.polimi.it

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

BACKUP SLIDES

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Open Packet Processor: Tables description

Flow Context Table

- Updated by packet actions or controller
- Flow Key: exact match on fields defined by update and lookup scope, configured by the controler
- **State:** flows start with default state. Entries populated by means of set-state action or by the controller

Flow Key	State	Registers [R ₀ ,R ₁ ,, R _k]	Timeouts
A,B,w,z	1	[1,12,,0]	Idle, hard, rollback state
	•••		
* (any)	0 (default)	[0,0,,0]	

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Open Packet Processor: Tables description

EFSM Table

- Updated by the controller
- Extended OpenFlow match+action table
- Match: packet fields + state + conditions result
- Actions: packet actions + next state + update actions

MATCH				ATCH		ACTIONS			
C ₀	C ₁		C _m	State	Packet fields	Next state	Packet actions	Update functions	

Towards traffic classification offloading to stateful SDN data planes - Davide Sanvito, <u>Daniele Moro</u>, Antonio Capone -

Memory Requirements

- - 8 EFSM entries
 - With this application we need 2 entries in the flow context table for each connection
 - **CAIDA Trace:** require ~900K flow context entries
 - An OPP ASIC implementation can support 256 EFSM entries and 1 Million entries for the flow context tables

Deep Packet Inspection (DPI)

- Traffic analysis and classification
- Use cases
 - Network security (IDS, IPS, DLP)
 - Bandwidth management
 - User profiling
 - Government Surveillance and Censorship
- Problems:
 - Encrypted traffic
 - High Computational cost

Deep Packet Inspection

