
ONOS Intent Framework allows programmers to specify high-level policies

which are then compiled to low-level configurations by the controller.

Intents gets re-compiled as a consequence of environment changes (e.g. link

failures) to meet the objective. Without further constraints, intents are

individually compiled to one of the shortest paths.

Can we consider jointly multiple intents in the compilation? Can we

reactively take into account flow-level statistics events to optimize a global

network objective, e.g. minimizing Maximum Link Utilization (MLU)?

In this demo we extended the ONOS SDN-IP [1] application and evaluate the

benefits in terms of average MLU with real traffic traces.

Future plans include the definition of a new Smart Intent whose compiler

monitors corresponding flows and periodically re-optimize the paths

according to their statistics. This would allow other applications to

transparently take benefit from the new re-compilation logic and the exposed

parameters (such as minimum time between reconfiguration, level of

robustness to variations, etc.).

Introduction

SDN-IP application

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy

Davide Sanvito, Mattia Gulli, Ilario Filippini, Antonio Capone

Towards Smart Intents

with Robust and Flexible Routing

References
[1] https://wiki.onosproject.org/display/ONOS/SDN-IP

[2] http://www.gurobi.com

[3] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, N. Taft, “Structural analysis of network traffic flows,” ACM SIGMET-

RICS PER, June 2004

[4] G. Bianchi, M. Bonola, A. Capone, C. Cascone, “OpenState: programming platform-independent stateful OpenFlow applications

inside the switch,” SIGCOMM CCR, April 2014.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker,

“P4: programming protocol-independent packet processors”. SIGCOMM CCR, July 2014

• Connects a SDN network to legacy external networks via BGP

• BGP routes are received by internal BGP speakers, relayed to

the ONOS app, translated to MultiPointToSinglePointIntents

and then compiled to low-level OF messages

ONOS Intent Framework allows programmers to specify high-level policies without

worrying about the low-level configurations which are compiled by the controller. One of

the interesting aspects is the transparent re-compilation as a consequence of environment

changes (e.g. link failures).

In this demo, we explore the possibility of re-optimizing the paths according to events that

can be defined based on flow level statistics. We extend the ONOS SDN-IP application to

periodically monitor the statistics of the AS-to-AS traffic and re-route it to minimize the

network maximum link utilization. To avoid too frequent network reconfigurations, that

would create network instability, we use robust routing solutions and put a limit to the

minimum amount of time a routing should be kept.

The idea is to initially forward the traffic on the shortest path (default behaviour of intents)

and measure it for a training period (e.g. a day). Then, by exploiting the pseudo-periodicity

of traffic, define a set of routing configurations to be applied for the next period. The

application has been complemented with an external module which retrieves the traffic

measurements, defines two optimization models to compute the routing configurations and

activation times and finally schedules their activation at the proper time. To cope with traffic

deviations, with respect to the corresponding traffic profile of the training period, routings

are computed to be robust over subsets of traffic matrix space.

We see our application as the first step towards the definition of a new Smart Intent whose

compiler monitors corresponding flows and periodically re-optimize the paths according to

their statistics. This would allow other applications to transparently take benefit from the

new re-compilation logic and the exposed parameters (such as minimum time between

reconfiguration, level of robustness to variations, etc.).

Issues and future works

A further step: Clustered Robust Routing (CRR)

Demo description

• SDN-IP tutorial network fed with 2 days traffic from Abilene

[3] replicated between pairs of Mininet hosts with iperf3

• MLU is monitored over the 2 days

SDN-IP
 traffic forwarding with standard intents for both days

ext SDN-IP
 traffic forwarding with standard intents during the 1st day

 TMs collected during 1st day are used by the optimization model to

generate robust routing configuration(s) for the 2nd day

Extended SDN-IP application

TRAINING PERIOD

• Traffic is forwarded as in standard SDN-IP app

• AS-to-AS Traffic Matrices (TMs) are collected
 TM endpoints inferred from BGP announcements

• Pairs of BGP routes are translated to PointoPointIntents

AT THE END OF THE TRAINING PERIOD

• Exploiting the quasi-periodicity of traffic, a new routing

configuration is applied for the following period
 Computed by solving [2] an optimization model taking into account flow

statistics and minimizing the average MLU

 Traffic deviations with respect to expected scenarios are coped with routing

configurations robust over the TM space

• Optimization model and routing activation scheduling run by

an off-platform app

• ONOS app exposes REST APIs to
 Retrieve TM samples

 Load a set of routing configurations

 Apply a selected routing configuration

• Set of robust routing configurations over the TM space

• Trade-off: number of reconfigurations vs robustness of routing
 ONOS does not support consistent updates mechanism* during network

update operations: a completely reactive approach can impair network

performances!

• two optimization models:
 Computation of a set of robust routing configurations

 TMs clustering in time, space and routing domains to compute the proper

routing activation times

 By-design guarantees on number of re-configurations and the minimum

duration for a network configuration.

*When a consistent updates mechanism will be available, our model already supports “broader transitions”

between subsequent routings to relax the timelines requirements of the update mechanism.

• Splittable routing in ONOS?
 Faster model resolution (LP vs ILP) and better solution (lower OF)

 OpenFlow’s Group Tables? Advanced SDN data plane ([4],[5])?

• Connection disruption during network updates:
 “Non-disruptive Intent Reallocation” from FBK CREATE-NET

• REST API:
 gRPC more efficient with larger TMs and topologies?

• Transparent failure recovery by Intent Framework:
 Paths enforced via LinkCollectionIntent not resilient

• Design data structures with ONOS distributed primitives
 Current testbed runs a single ONOS instance

• Move the statistics-based recompilation logic from an off-

platform app to the ONOS Intent Framework:
 any application can transparently benefit

 which parameters should we expose at Intent level?

 heuristics as an alternative to the integration of optimization tools?

TRAINING PERIOD

