
October 25, 2017

ONOS plug&play optimization
and re-routing module

Antonio Capone, Davide Sanvito, Daniele Moro

Motivations

● ONOS Intent Framework allows to specify high-level policies

● Transparent re-compilation as a consequence of environment changes

● Can we reactively take into account flow-level statistics events to

optimize a global network objective?

○ e.g. minimize Maximum Link Utilization (MLU)

Initial idea

● Definition of a new smart Intent whose compiler
○ monitors statistics of flows corresponding to a set of intents

○ periodically re-optimize their paths based on their flow statistics

● Any application can transparently benefit from the new re-compilation
logic

PROBLEM: the integration of optimization tools inside an ONOS instance kills

the performance!

Proposed approach

● Split flow monitoring and path enforcing from routing logic

● (Re-)routing logic moved to an off-platform application

● Application developers/operators can define their own plug&play
external routing logic

○ optimization tools/AI/ML based on traffic statistics

○ can re-use their existing TE tools and use ONOS to control the network

Big picture

● Application’s developers submit a set of Intents to the new

MonitorAndReroute module to monitor their stats

● The new module propagates the related flow stats to the off-platform

application

● The new module applies the new routing configuration, (re-)computed

and received from the off-platform application, via the Intent

Framework

Application workflow example

New ONOS module: MonitorAndReroute

● Receives Intents to be submitted and monitored

○ offers a service to other ONOS applications

● Submits the Intent to the Intent Framework

● Maps Intent↔FlowRule to filter FlowRuleEvent to be propagated to

the off-platform application

○ offers a REST/gRPC API

● Receives new routing configurations

○ offers a REST/gRPC API

● Enforce new routing configurations via Intent Framework

How to enforce a routing?

1. PathIntent/LinkCollectionIntent allow to specify an explicit path
○ Path itself is part of the objective => failures are not transparently recovered

2. The new module itself might handle failures similarly to
PointToPointIntentCompiler*

○ Against code reusability: this functionality might be useful to other app developers!

3. Define a new Intent with “suggested” path(s)

○ The compiler checks if these path(s) are available and eventually fall backs to classic

shortest paths

○ But this is very similar to PointToPointCompiler’s compile()! We might directly

modify PointToPointIntent to include optional primary/backup paths!

*the compiler itself computes the backup path and configures both the flow rules and the fast-failover mechanism

Interactions ONOS module ↔ off-platform app (1)

Flow statistics propagation

● Retrieving statistics via REST implies a pull-based approach, so we
would need to cache them while waiting for the off-platform app

○ high synchronization overhead between instances in case of big number of monitored

intents

● gRPC allows to directly push them as soon as the FlowRuleEvent is
triggered

Interactions ONOS module ↔ off-platform app (2)

New routing configuration

● The off-platform push them to the ONOS module

○ REST and gRPC are both viable approaches

→ Definition of a common interface with two implementations

(REST API + gRPC)

DEMO from ONOS Build 2017

● PoC implementation built on top of SDN-IP application

● SDN-IP tutorial network fed with 2 days traffic from Abilene

● MLU is monitored over the 2 days

● SDN-IP

○ traffic forwarding with standard intents for both days

● extended SDN-IP

○ traffic forwarding with standard intents during the 1st day

○ TMs collected during 1st day are used by the optimization model to generate robust

routing configuration(s) for the 2nd day

Routing optimization

● Traffic is monitored for a training period (e.g. a day) and a new routing

configuration is computed and applied for the next period

○ exploiting traffic quasi-periodicity on a daily basis

○ defining an optimization model* to cluster TMs in time, space and routing domain

based on flow stats to minimize avg MLU

○ routing configurations are robust over TM space to cope with traffic deviations w.r.t

expected scenarios

○ Trade-off: number of reconfigurations vs robustness of routing

*joint work with France Research Center, Huawei Technologies Co. Ltd

SDN-IP vs extended SDN-IP comparison

https://docs.google.com/file/d/0B2FwQxU5EWr_d0RzTEstRUxCZGM/preview

The approach can be iterated!

OPTIMIZATION MODEL

The approach can be iterated!

OPTIMIZATION MODEL

The approach can be iterated!

OPTIMIZATION MODEL

Feedbacks and collaboration

● Andrea Campanella and Carmelo Cascone helped us in the proposal

definition and gave us interesting feedbacks

● Andrea will support us in the code review process

Release plan - FIRST RELEASE

Definition of the interface and implementation of the MonitorAndReroute
module:

1. receives intents to be submitted and monitored

2. exposes a REST API to collect flow statistics of the monitored flows

3. exposes a REST API to configure the routings by specifying the explicit path

(which will be submitted via existing intents, e.g. PathIntent)

Implementation of an off-platform application example to optimize flow routings
by jointly considering the flow statistics of different flows

Release plan - SECOND RELEASE

Flow statistics are pushed to the off-platform application via gRPC.

The routings can be configured via gRPC.

New/modified intent to allow a seamless failure recovery.

gRPC is also used to propagate topology changes to make the external

module aware of the latest state of the network.

Release plan - THIRD RELEASE

An application can request the monitoring of a treatment (e.g. HTTP traffic)

rather than of a specific intent.

Our module will propagate to the off-platform application any flow

statistics corresponding to flows matching one of the treatment to be

monitored.

Open points

● The MonitorAndReroute module orchestrates application, Intent

Framework, off-platform apps communication

○ we plan to implement it as an application offering a service

○ Is it a proper position in the ONOS architecture?

○ Should we implement it as a core service?

● How to enforce a routing configuration?

○ New Intent vs PointToPointIntent extension

● Intents are a “topology-independent network-centric abstraction”

○ is it formally correct to put a topology-dependent information (an explicit path) as a

constraint?

