
The Acceleration of OfSoftSwitch
Nicola Bonelli*✦, Gregorio Procissi*✦, Davide Sanvito⌑✦, Roberto Bifulco✫

2017 IEEE NFV-SDN - 6-8 November 2017 - Berlin, Germany

* Università di Pisa, Pisa (Italy)
✦ CNIT - Consorzio Nazionale Interuniversitario per le Telecomunicazioni (Italy)
⌑ Politecnico di Milano, Milano (Italy)
✫ NEC Laboratories Europe, Heidelberg (Germany)

Motivations
Software switches are widespread tools for experimenting novel
programming paradigms and abstractions

OfSoftSwitch (OFSS)

✔ very popular tool (150+ GitHub forks)
✔ simple and straightforward user-space OpenFlow 1.3 implementation
✔ enables fast experimentation
✖ not performance-oriented
✖ limited to functional experimentation

Contributions
● Acceleration of OfSoftSwitch (aOFSS)

○ 90x performance speedup

● OFSS simplicity preserved
○ new MAT-based forwarding abstractions can be easily implemented
○ Accelerate existing prototypes (we successfully ported OpenState to aOFSS)

OFSS architecture
ofprotocol

● datapath configuration
● communication with controller

ofdatapath

● single process application
● netdev library
● standard Linux AF_PACKET sockets

○ inefficient I/O speed

OFSS acceleration
● Replacement of I/O framework

○ netdev library replaced with pcap library
○ enabled support for PF_RING ZC, netmap, DPDK, PFQ

● ofdatapath code optimizations
○ dynamic memory allocation refactor
○ hash maps refactor
○ zero copy
○ batch processing

● multi-core processing
○ limited modifications to OFSS
○ PFQ framework

PFQ - Packet Family Queue
● Open-source Linux kernel module
● Software-accelerated packet I/O
● In-kernel early stage packet processing

○ Filtering, logging, forwarding, load-balancing, dispatching
○ programmable via pfq-lang eDSL

● Group abstraction
● Fine-grained packet distribution

○ Application sockets
○ Network interfaces
○ Kernel Network Stack

PFQ

● PFQ allows to distribute workload across unmodified ofdatapath processes
○ No need to include an additional packet

distribution layer into the application
○ Each OFSS instance processes a quota

of the traffic according to a hash-based
load balancing algorithm

○ ofprotocol presents to the controller
a single ofdatapath instance

From OFSS to multi-core OFSS

Performance evaluation
● OFSS vs aOFSS
● OpenFlow pure forwarding

SWITCH

CONTROLLER

TRAFFIC GEN
10G

1G
10G

OpenState/BEBA switch
● Stateful OpenFlow

○ FSM abstraction

● In-switch forwarding behaviour adaptation
● Stateful stage

○ State table + flow table

● Custom flow definition

From stateless aOFSS to accelerated OpenState
● PFQ allows custom steering logic

○ User-defined consistency via pfq-lang

● OpenState stateful processing based on per-flow state
○ User-defined flow definition

●
● Configure PFQ to steer traffic according to lookup-scope definition

○ each flow with its own state is guaranteed to be processed by the same OFSS instance
○ no need of state synchronization between instances

Performance evaluation (3)

Stateless OpenState on aOFSS Stateful OpenState on aOFSS

Conclusion
● Acceleration of OFSS

○ aOFSS

● Stateful MAT abstraction acceleration
○ Openstate porting from OFSS to aOFSS

● Open-source contribution
○ aOFSS is available in the BEBA-EU branch of OFSS official repo
○ https://github.com/CPqD/ofsoftswitch13/tree/BEBA-EU

Thanks!
davide.sanvito@polimi.it

Performance evaluation (2)
● Optimization techniques contribution for 1 core

