

The Acceleration of OfSoftSwitch

Nicola Bonelli^{*+}, Gregorio Procissi^{*+}, <u>Davide Sanvito</u>^{*+}, Roberto Bifulco^{*}

* Università di Pisa, Pisa (Italy)

* CNIT - Consorzio Nazionale Interuniversitario per le Telecomunicazioni (Italy)

[®] Politecnico di Milano, Milano (Italy)

* NEC Laboratories Europe, Heidelberg (Germany)

2017 IEEE NFV-SDN - 6-8 November 2017 - Berlin, Germany

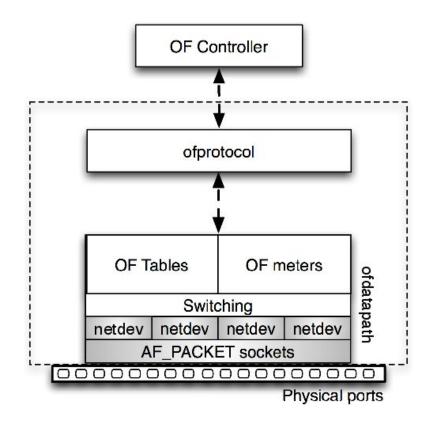
Software switches are widespread tools for experimenting novel programming paradigms and abstractions

OfSoftSwitch (OFSS)

- ✓ very popular tool (150+ GitHub forks)
- ✓ simple and straightforward user-space OpenFlow 1.3 implementation
- enables fast experimentation
- not performance-oriented
- Iimited to functional experimentation

Contributions

- Acceleration of OfSoftSwitch (aOFSS)
 - 90x performance speedup
- OFSS simplicity preserved
 - new MAT-based forwarding abstractions can be easily implemented
 - Accelerate existing prototypes (we successfully ported OpenState to aOFSS)

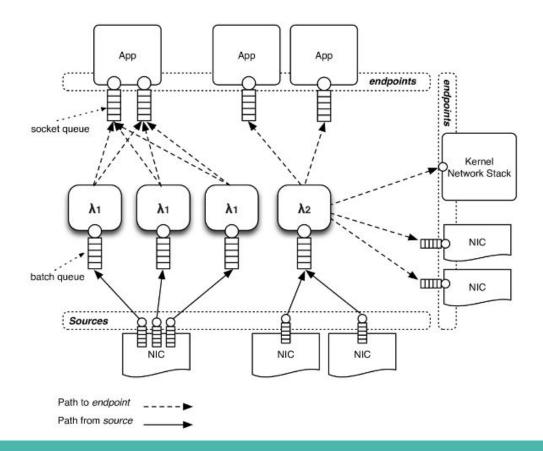

OFSS architecture

ofprotocol

- datapath configuration
- communication with controller

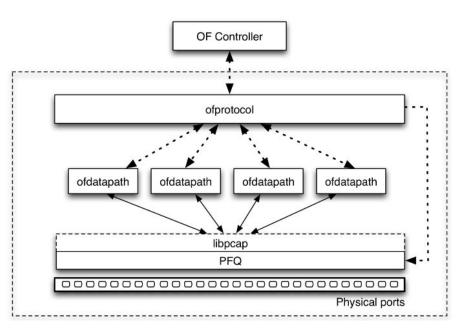
ofdatapath

- single process application
- netdev library
- standard Linux *AF_PACKET* sockets
 - inefficient I/O speed

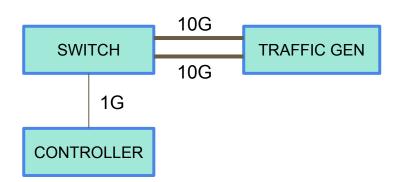

OFSS acceleration

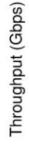
- Replacement of I/O framework
 - netdev library replaced with pcap library
 - enabled support for PF_RING ZC, netmap, DPDK, PFQ
- ofdatapath code optimizations
 - dynamic memory allocation refactor
 - hash maps refactor
 - zero copy
 - batch processing
- multi-core processing
 - limited modifications to OFSS
 - PFQ framework

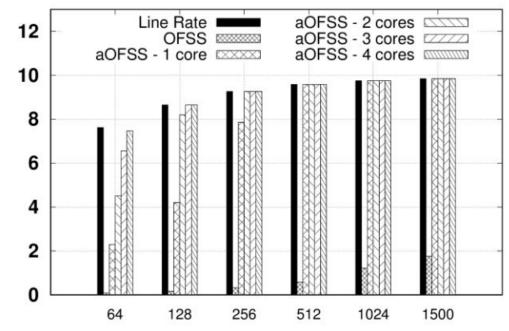
PFQ - Packet Family Queue


- Open-source Linux kernel module
- Software-accelerated packet I/O
- In-kernel early stage packet processing
 - Filtering, logging, forwarding, load-balancing, dispatching
 - programmable via pfq-lang eDSL
- Group abstraction
- Fine-grained packet distribution
 - Application sockets
 - Network interfaces
 - Kernel Network Stack

PFQ


From OFSS to multi-core OFSS

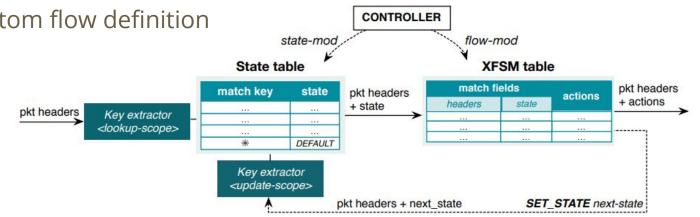

- PFQ allows to distribute workload across unmodified ofdatapath processes
 - No need to include an additional packet distribution layer into the application
 - Each OFSS instance processes a quota of the traffic according to a hash-based load balancing algorithm
 - ofprotocol presents to the controller a single ofdatapath instance



Performance evaluation

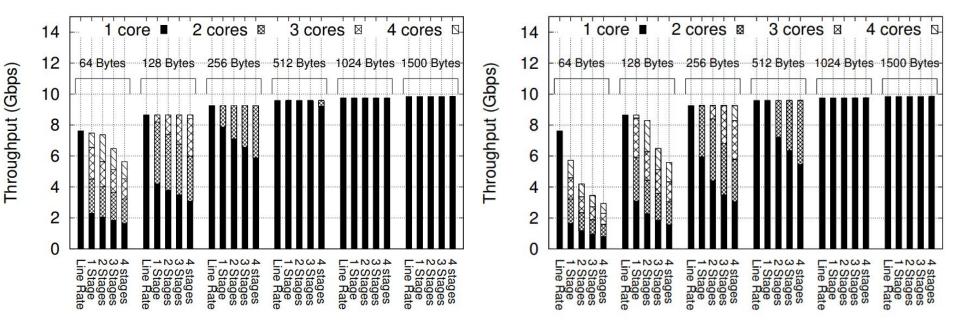
- OFSS vs aOFSS
- OpenFlow pure forwarding

Packet Size (Bytes)


OpenState/BEBA switch

- Stateful OpenFlow
 - **FSM** abstraction \bigcirc
- In-switch forwarding behaviour adaptation
- Stateful stage
 - State table + flow table \cap
- Custom flow definition

Horizon 2020 **European Union Funding** for Research & Innovation


From stateless aOFSS to accelerated OpenState

- PFQ allows custom steering logic
 - User-defined consistency via pfq-lang
- OpenState stateful processing based on per-flow state
 - User-defined flow definition

• Configure PFQ to steer traffic according to lookup-scope definition

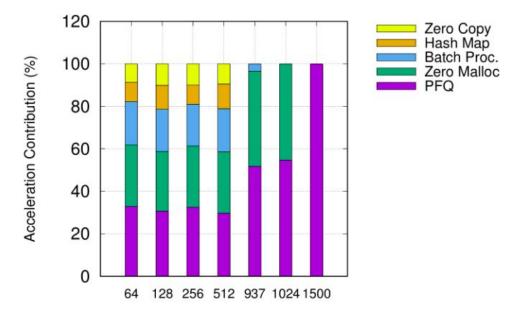
- each flow <u>with its own state</u> is guaranteed to be processed by the same OFSS instance
- no need of state synchronization between instances

Performance evaluation (3)

Stateless OpenState on aOFSS

Stateful OpenState on aOFSS

Conclusion


- Acceleration of OFSS
 - aOFSS
- Stateful MAT abstraction acceleration
 - Openstate porting from OFSS to aOFSS
- Open-source contribution
 - aOFSS is available in the BEBA-EU branch of OFSS official repo
 - https://github.com/CPqD/ofsoftswitch13/tree/BEBA-EU

davide.sanvito@polimi.it

Performance evaluation (2)

• Optimization techniques contribution for 1 core

Packet Size (Bytes)