# Adaptive Robust Traffic Engineering in Software Defined Networks

Davide Sanvito<sup>\*</sup>, Ilario Filippini<sup>\*</sup>, Antonio Capone<sup>\*</sup>, Stefano Paris<sup>\*</sup>, Jeremie Leguay<sup>\*</sup>

- \* Politecnico di Milano (Italy)
- Huawei Technologies, France Research Center (France)



IFIP Networking - May 14-16, 2018 - Zurich, Switzerland

#### **Traffic Engineering and Software-Defined Networks**

- T.E. optimizes network configuration according to traffic conditions
  - Traffic Matrix (TM)
  - Maximum Link Utilization (MLU)
- Dynamicity of traffic
  - ordinary daily fluctuations
  - unpredictable events (congestion, failures, ...)
- Software-Defined Networks
  - global view of the network status
  - traffic monitoring
  - online traffic optimization

# How to cope with traffic dynamicity?

- Static TE
  - stable routing configuration
  - low optimality
- Dynamic TE
  - multiple routing configurations
  - optimal routing
  - traffic monitoring latency and processing overhead
  - routing instability (consistent update)
- Semi-static TE

#### **Our contribution**

- Clustered Robust Routing (CRR)
  - Algorithm to build a set of robust routing (RR) configuration associated to clusters of TMs
  - Clustering of TM space in time, traffic and routing domains
  - Stability of configurations (guaranteed routing holding time)
- SDN controller logic
  - TM collection (e.g. for a 24h period)
  - CRR execution
  - Activation of RR config for the following 24h



## **Clustered Robust Routing**

- Find the best assignment of **M** TMs to **N** robust RCs to find **N** TM clusters having minimum length of **L** TMs and an overlap of **O** TMs
- Joint optimization of routing and clusters
  - output set of RCs is required as input by the clustering logic
- Two-steps iterative algorithm
  - Segmentation Problem (SP)
  - Robust Routing Problem (**RRP**)

#### CRR = SP + RRP



- INPUT
  - TM history/prediction
  - $\circ \quad \text{Set of W RCs} \quad$
- PARAMETERS
  - $\circ$  N = # of RCs
  - L = cluster size
  - O = cluster overlap amount
- OBJECTIVE FUNCTION:
  - Minimizing the sum of MLU of each TM over its assigned configuration
- OUTPUT
  - Set of N robust RCs
  - RCs activation times

#### CRR = SP + RRP



- INPUT
  - TM history/prediction
  - $\circ \quad \text{Set of W RCs} \quad$
- PARAMETERS
  - $\circ$  N = # of RCs
  - L = cluster size
  - O = cluster overlap amount
- OBJECTIVE FUNCTION:
  - Minimizing the sum of MLU of each TM over its assigned configuration
- OUTPUT
  - Set of N robust RCs
  - RCs activation times

#### **Numerical evaluation**

- Abilene backbone network
- 11 nodes
- 5-min granularity TMs
- CRR objective: minimize TM-averaged MLU
- Performance ratio with respect to Dynamic TE
- Results are averaged over 7 days



#### Minimum cluster length



- Parameter L defines the minimum cluster size
  - translates in a guaranteed
     routing configuration duration
- It allows to tune the tradeoff between Stable TE and Dynamic TE

# **Overlapping clusters**





- Network reconfiguration is not instantaneous
  - Consistent updates mechanisms
- Clusters can be overlapped
  - Routing configurations take into account **O** TMs before/after the boundaries of the clusters
- Overlaps help slow consistent updates mechanism
- Negligible impact as L >> O

#### **Impact of TM prediction error**

- We run the CRR over a noisy version of the TMs and applied its output to the original set of TMs
- Table reports % increase of objective function w.r.t. Dynamic TE
  - $\circ$  different levels of noise ( $\alpha$ )
  - different levels of robustness (L)
- Performance decrease
  - But limited to 10-12% wrt DynTE
- Larger clusters are better as noise increases
  - Resort to sTE if prediction quality is low

| $\alpha$ cluster. |      | 0    | 15   | 30   | 45    | 60    |
|-------------------|------|------|------|------|-------|-------|
| sTE               |      | 6.52 | 7.02 | 8.19 | 9.25  | 10.52 |
| CRR               | L=72 | 4.07 | 5.13 | 6.93 | 8.94  | 11.09 |
|                   | L=60 | 4.04 | 5.23 | 7.24 | 9.44  | 11.19 |
|                   | L=48 | 3.76 | 5.06 | 7.12 | 9.61  | 11.79 |
|                   | L=36 | 3.17 | 4.55 | 6.74 | 9.04  | 11.33 |
|                   | L=24 | 2.84 | 4.50 | 6.85 | 9.35  | 11.93 |
|                   | L=12 | 2.06 | 4.29 | 7.04 | 10.08 | 12.28 |

## **Role of the SDN controller**

- Offline
  - TM collection (e.g. for a 24h period)
  - CRR execution (e.g. during night)
- Online
  - estimation of current traffic scenario
  - $\circ$  ~ activation of the proper RR configuration
  - handling of unexpected events
    - big traffic changes wrt planned scenarios
    - network failures

#### Conclusion

- Clustered Robust Routing (CRR)
  - reduced number of routing configuration
  - guaranteed routing holding time
- SDN controller plays a key role
  - a-posteriori evaluation of TM prediction error
  - $\circ$  adaptive selection of the best level of robustness

# Thanks!

davide.sanvito@polimi.it

#### TM clustering and routing changes





$$\min \sum_{i \in \mathcal{T}, j \in \mathcal{R}} x_{ij} \delta_{i,j} + \frac{1}{2} \sum_{i \in \mathcal{T}, j \in \mathcal{R}} y_{ij} \left( \sum_{(i-O < k \le i)_{|\mathcal{T}|}} \delta_{k,j} - \sum_{(i+1 \le k \le i+O)_{|\mathcal{T}|}} \delta_{k,j} \right) + \frac{1}{2} \sum_{i \in \mathcal{T}, j \in \mathcal{R}} w_{ij} \left( \sum_{(i \le k < i+O)_{|\mathcal{T}|}} \delta_{k,j} - \sum_{(i-O \le k < i)_{|\mathcal{T}|}} \delta_{k,j} \right)$$

$$(1)$$

$$y_{ij} \ge x_{(i+1)_{|\mathcal{T}|}j} - x_{ij}, \quad \forall i \in \mathcal{T}, j \in \mathcal{R}$$

$$\sum_{i \in \mathcal{T}} y_{ij} \le z_j, \quad \forall j \in \mathcal{R}$$

$$(3)$$

$$\sum y_{ij} \le \sum z_j$$

$$(4)$$

SP

 $\sum_{i \in \mathcal{T}, j \in \mathcal{R}} y_{ij} \leq \sum_{j \in \mathcal{R}} z_j$  $\sum_{j \in \mathcal{R}} x_{ij} = 1, \quad \forall i \in \mathcal{T}$  $\sum_{i \in \mathcal{T}} x_{ij} \geq L \cdot z_j, \quad \forall j \in \mathcal{R}$  $\sum_{j \in \mathcal{R}} z_j \leq N$ 

 $x_{ij}, y_{ij}, z_j \in \{0, 1\}, \qquad \forall i \in \mathcal{T}, j \in \mathcal{R}$ 



(5)

(7)

(8)



(b) Segmentation with O = 1

(6) 
$$\begin{aligned} w_{ij} \ge x_{(i-1)|\mathcal{T}|j} - x_{ij}, & \forall i \in \mathcal{T}, j \in \mathcal{R} \\ \sum w_{ij} < z_i, & \forall j \in \mathcal{R} \end{aligned}$$
(9) (10)

$$\sum_{i\in\mathcal{T}} w_{ij} \le z_j, \qquad \forall j\in\mathcal{R}$$
(10)

$$\sum_{i\in\mathcal{T},j\in\mathcal{R}} w_{ij} \le \sum_{j\in\mathcal{R}} z_j \tag{11}$$

#### RRP

$$[\mathbf{RR}]: \min \ \gamma_{max} \quad \text{s. t.:} \tag{13}$$

$$\sum_{(i,j)\in\mathcal{L}} f_{ij}^h - \sum_{(j,i)\in\mathcal{L}} f_{ji}^h = \begin{cases} 1 & \text{if } i = O_h \\ -1 & \text{if } i = D_h \\ 0 & \text{otherwise} \end{cases}$$

$$\forall i \in \mathcal{N}, h \in \mathcal{H} \tag{14}$$

$$\sum_{h\in\mathcal{H}} d_h^m \cdot f_{ij}^h \le c_{ij}, \forall m \in \mathcal{T}_c, (i,j) \in \mathcal{L} \tag{15}$$

$$\gamma_{max} \ge \frac{\sum_{h\in\mathcal{H}} d_h^m f_{ij}^h}{c_{ij}}, \forall m \in \mathcal{T}_c, (i,j) \in \mathcal{L} \tag{16}$$

$$0 \le f_{ij}^h \le 1, \quad \forall h \in \mathcal{H}, (i,j) \in \mathcal{L} \tag{17}$$