April 5th, 2022 - ACM EuroMLSys 2022

syslrn: Learning What to Monitor for Efficient Anomaly Detection

Davide Sanvito, Giuseppe Siracusano, Sharan Santhanam, Roberto Gonzalez, Roberto Bifulco

NEC Laboratories Europe

System monitoring based on logs

Monitoring software behaviour is a critical task in any operational system deployment

Logs track application state and [req-*] [instance: *] Attempting claim on node *: memory * MB, disk * GB, vcpus * CPU

TIMESTAMP	PID	VERB COMPONENT	LOG MESSAGE	
2021-11-25 19:49:51.4	<mark>79</mark> 22193	INFO nova.compute.claims	[reg-dfdc8879-1710-44db-9acb-00927348ce05] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Attempting claim on node c431: memory 512 MB, disk 1 GB, vcpus	1 CPU
2021-11-25 19:49:51.4	79 22193	INFO nova.compute.claims	[req-dfdc8879-1710-44db-9acb-00927348ce05] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Total memory: 32010 MB, used: 512.00 MB	
[]				
2021-11-25 19:49:51.4	81 22193	INFO nova.compute.claims	[req-dfdc8879-1710-44db-9acb-00927348ce05] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Claim successful on node c431	
2021-11-25 19:49:55.7	99 22193	INFO nova.compute.manage:	r [-] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Started (Lifecycle Event)	
2021-11-25 19:49:55.8	<mark>27</mark> 22193	INFO nova.compute.manage:	r [req-acdc7c48-a118-43a7-90e4-cfbc870b8c2f] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Paused (Lifecycle Event)	
2021-11-25 19:49:57.2	<mark>65</mark> 22193	INFO nova.compute.manage	r [req-acdc7c48-a118-43a7-90e4-cfbc870b8c2f] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Resumed (Lifecycle Event)	
2021-11-25 19:57:15.2	31 22193	INFO nova.compute.manage:	r [req-2684c5a4-30a7-4a5a-93d2-82929bb0a3e8] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Attaching volume f194c1ef-fca0-4a36-8962-9d9ea8b06fbe to /dev/	vdb
[]				
2021-11-25 20:04:47.7	05 22193	INFO nova.compute.manage	r [-] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Stopped (Lifecycle Event)	

Tipical steps for a log-based Anomay Detection system

- Correlation
- Parsing
- Anomaly Detection (AD)

Observations

- Need app-specific knowledge, not re-usable
- Limited by when and what an application logs

[reg-*] [instance: *] Attaching volume * to *

Provenance Graphs

Graph capturing the relationships across OS-level entities
Based on monitoring of OS events (e.g. syscalls)

Observations

- Types and number of processes and their relationships disclose relevant information on the application
- Mostly used for security-critical services and for offline analysis
- Failure detection might require the monitoring of a smaller set of events

syslrn

Complement these approaches with an alternative

- Little domain knowledge
- Independent from software developer practices
- Lightweight enough to be deployed in high performance scenarios

High-level design

Offline phase: *detailed* monitoring to identify key indicators of normal behaviour

Online phase: *lightweight* monitoring to verify the correct behaviour

Offline vs Online phases

Offline phase

- Build complete system behaviour graph
- Run graph analysis methods to identify relevant features
- Derive a model for normal behaviour

Online phase

- Monitoring based on Linux eBPF
- Collect only relevant features
- Driven by monitoring application's external interfaces
- Perform Anomaly Detection

In this paper:

- Initial prototype of syslrn
- Graph analysis method: heuristic based on bag-of-components graph embedding and linear regression
- Tested with an use case based on OpenStack

Case study: OpenStack

Complex cloud management system

- Several modules (e.g. compute, networking, storage, etc)
- Interactions across modules and with third-party software

Instrumented testbed

- Common OpenStack operations
- Injection of realistic failures based on [1], extended to support multiple workloads

Application graph example

- System background processes
- Application background processes
- Processes related to the handling of the service requests

[1] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, N. Bidokhti - How Bad Can a Bug Get? An Empirical Analysis of Software Failures in the OpenStack Cloud Computing Platform [ACM ESEC/FSE 2019]

Case study: OpenStack (2)

Offline phase

- Bag-of-nodes graph embedding: two types of features, instance counter and relationships counter
- Normal behaviour model: analyze the relationship between the features of the graph embeddings and the number of service requests received using an heuristic
 - Fit a Linear Regression (LR) model for each feature of the embedding
 - Selects a subset of features based on a goodness-of-fit measure
- Features backtracking: map selected features to OS primitives required to monitor them

Online phase

- Collect selected features using eBPF programs
- Anomaly Detection periodically triggered to check them against the model of normal behaviour
 - Based on an ensemble of LR models

Evaluation

Baseline

- DeepLog
- 3-DeepLog
- Dataset
 - 900+ experiments: failure free (FF) or single failure point in one OpenStack component
 - One or more homogeneous workloads per experiment
 - Collection of both application logs and OS-level events
- Models
 - Training on FF data only
 - Testing on FF and failures
- Metrics
 - Recall (TPR)
 - Selectivity (TNR)

Monitoring overhead

- We investigated the overhead of running OS-level feature extraction with eBPF
- Benchmark based on Redis, a high performance key-value store that heavily relies on communication
 - OpenStack VM generation workload is unsuitable to perform a stress test
- redis-benchmark tool
 - **50** concurrent clients
 - No connection keep-alive
- When logs are not required, for some performance critical deployment syslrn may provide a more efficient monitoring alternative

Operation	Baseline	Log-based	eBPF program						
	(no mon)	monitoring	(w/ user code)						
SET	48.8k	17.2k (-64.73%)	47.4k (-2.78%)						
GET	48.3k	17.8k (-63.43%)	47.1k (-2.61%)						
LPUSH	48.6k	17.2k (-64.51%)	47.4k (-2.36%)						
LPOP	49.7k	17.1k (-65.63%)	48.6k (-2.19%)						

redis-server throughput in req/s

Conclusion

Initial prototype of syslrn

- Minimal set of functionalities
- Preliminary evaluation and deployment models
 - Single use case with simplified subset of workloads
 - Simplifying assumption (e.g. timing of features collection and anomaly detection)

Next steps

- Evaluation on larger set of applications to investigate benefits and limitations
- Extend sysIrn with multiple graph representation and normal behaviour modeling methods

Dataset available

- Pre-processed graph data
 - Raw monitoring data
 - eBPF monitoring data
 - Linux Audit monitoring data
 - OpenStack application logs

GitHub https://github.com/nec-research/syslrn-EuroMLSys22 zenodo https://zenodo.org/record/6374398


```
Orchestrating a brighter world
                   NEC
```

Thank you!

Davide.Sanvito@neclab.eu

Orchestrating a brighter world

