
© NEC Corporation 2022

syslrn: Learning What to Monitor
for Efficient Anomaly Detection

April 5th, 2022 - ACM EuroMLSys 2022

Davide Sanvito, Giuseppe Siracusano, Sharan Santhanam,
Roberto Gonzalez, Roberto Bifulco

NEC Laboratories Europe



© NEC Corporation 20222

u Tipical steps for a log-based Anomay Detection system
n Correlation
n Parsing
n Anomaly Detection (AD)

uObservations
n Need app-specific knowledge, not re-usable
n Limited by when and what an application logs

System monitoring based on logs

TIMESTAMP PID VERB COMPONENT LOG MESSAGE
2021-11-25 19:49:51.479 22191 INFO nova.compute.claims [req-dfdc8879-1710-44db-9acb-00927348ce05 ...] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Attempting claim on node c431: memory 512 MB, disk 1 GB, vcpus 1 CPU
2021-11-25 19:49:51.479 22191 INFO nova.compute.claims [req-dfdc8879-1710-44db-9acb-00927348ce05 ...] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Total memory: 32010 MB, used: 512.00 MB
[...]
2021-11-25 19:49:51.481 22191 INFO nova.compute.claims [req-dfdc8879-1710-44db-9acb-00927348ce05 ...] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Claim successful on node c431
2021-11-25 19:49:55.799 22191 INFO nova.compute.manager [-] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Started (Lifecycle Event)
2021-11-25 19:49:55.827 22191 INFO nova.compute.manager [req-acdc7c48-a118-43a7-90e4-cfbc870b8c2f - - - - -] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Paused (Lifecycle Event)
2021-11-25 19:49:57.265 22191 INFO nova.compute.manager [req-acdc7c48-a118-43a7-90e4-cfbc870b8c2f - - - - -] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Resumed (Lifecycle Event)
2021-11-25 19:57:15.231 22191 INFO nova.compute.manager [req-2684c5a4-30a7-4a5a-93d2-82929bb0a3e8 ...] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] Attaching volume f194c1ef-fca0-4a36-8962-9d9ea8b06fbe to /dev/vdb
[...]
2021-11-25 20:04:47.705 22191 INFO nova.compute.manager [-] [instance: f6f318e3-3922-46d1-96df-3013a32acb77] VM Stopped (Lifecycle Event)

uMonitoring software behaviour is a critical task in any operational system deployment
u Logs track application state and relevant events in a semi-structured format[req-✶] [instance: ✶] Attempting claim on node ✶: memory ✶ MB, disk ✶ GB, vcpus ✶ CPU

[req-✶] [instance: ✶] Attaching volume ✶ to ✶



© NEC Corporation 20223

uGraph capturing the relationships across OS-level entities
u Based on monitoring of OS events (e.g. syscalls)

uObservations
n Types and number of processes and their relationships disclose relevant information on the application
n Mostly used for security-critical services and for offline analysis
n Failure detection might require the monitoring of a smaller set of events

Provenance Graphs



© NEC Corporation 20224

u Complement these approaches with an alternative
n Little domain knowledge
n Independent from software developer practices
n Lightweight enough to be deployed in high performance scenarios

uHigh-level design
n Offline phase: detailed monitoring to identify key indicators of normal behaviour
n Online phase: lightweight monitoring to verify the correct behaviour

syslrn



© NEC Corporation 20225

uOffline phase
n Build complete system behaviour graph
n Run graph analysis methods to identify relevant features
n Derive a model for normal behaviour

uOnline phase
n Monitoring based on Linux eBPF
n Collect only relevant features
n Driven by monitoring application’s external interfaces 
n Perform Anomaly Detection

u In this paper:
n Initial prototype of syslrn
n Graph analysis method: heuristic based on bag-of-components graph embedding and linear regression
n Tested with an use case based on OpenStack

Offline vs Online phases



© NEC Corporation 20226

u Complex cloud management system
n Several modules (e.g. compute, networking, storage, etc)
n Interactions across modules and with third-party software

u Instrumented testbed
n Common OpenStack operations
n Injection of realistic failures based on [1], extended to support 

multiple workloads

u Application graph example
n System background processes
n Application background processes
n Processes related to the handling of the service requests

Case study: OpenStack

[1] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, N. Bidokhti - How Bad Can a Bug Get? An Empirical Analysis of Software Failures in the OpenStack Cloud Computing Platform [ACM ESEC/FSE 2019]

nova-compute

libvirtd

qemu-kvm

qemu-kvm



© NEC Corporation 20227

uOffline phase
n Bag-of-nodes graph embedding: two types of features, instance counter and relationships counter
n Normal behaviour model: analyze the relationship between the features of the graph embeddings and the number 

of service requests received using an heuristic
• Fit a Linear Regression (LR) model for each feature of the embedding
• Selects a subset of features based on a goodness-of-fit measure

n Features backtracking: map selected features to OS primitives required to monitor them

uOnline phase
n Collect selected features using eBPF programs
n Anomaly Detection periodically triggered to check them against the model of normal behaviour
• Based on an ensemble of LR models

Case study: OpenStack (2)



© NEC Corporation 20228

u Baseline
n DeepLog
n 3-DeepLog

u Dataset
n 900+ experiments: failure free (FF) or single failure point in one OpenStack component
n One or more homogeneous workloads per experiment
n Collection of both application logs and OS-level events

uModels
n Training on FF data only
n Testing on FF and failures

uMetrics
n Recall (TPR)
n Selectivity (TNR)

Evaluation



© NEC Corporation 20229

uWe investigated the overhead of running OS-level feature extraction with eBPF
u Benchmark based on Redis, a high performance key-value store that heavily relies on 

communication
n OpenStack VM generation workload is unsuitable to perform a stress test

u redis-benchmark tool
n 50 concurrent clients
n No connection keep-alive

Monitoring overhead

redis-server throughput in req/s 

uWhen logs are not required, for some 
performance critical deployment syslrn 
may provide a more efficient monitoring 
alternative



© NEC Corporation 202210

u Initial prototype of syslrn
n Minimal set of functionalities
n Preliminary evaluation and deployment models
• Single use case with simplified subset of workloads
• Simplifying assumption (e.g. timing of features collection and anomaly detection)

uNext steps
n Evaluation on larger set of applications to investigate benefits and limitations
n Extend syslrn with multiple graph representation and normal behaviour modeling methods

Conclusion



© NEC Corporation 202211

u Pre-processed graph data
u Raw monitoring data

n eBPF monitoring data
n Linux Audit monitoring data
n OpenStack application logs

Dataset available

https://github.com/nec-research/syslrn-EuroMLSys22

https://zenodo.org/record/6374398

https://github.com/nec-research/syslrn-EuroMLSys22
https://zenodo.org/record/6374398


© NEC Corporation 202212

Thank you!
Davide.Sanvito@neclab.eu

mailto:Davide.Sanvito@neclab.eu



