MUSTARD - Adaptive Behavioral Analysis for Ransomware Detection

Davide Sanvito, Giuseppe Siracusano, Roberto Gonzalez, Roberto Bifulco NEC Laboratories Europe

Problem

- Ransomwares can be detected with behavioural analysis on filesystem operations
- Monitoring all the operations for all the processes can introduce a significant overhead
 - E.g. time to copy 10GB file with dd in Linux ext4: up to 20% slower when updating per-process counters with eBPF
 - Potential limited applicability in real settings

Idea

- The type and number of features monitored affect the overhead
- Number of underlying low-level OS interfaces
- Compute-intensive features (e.g. write entropy)
- Most of the processes are benign
- A limited number of processes have a ransomware-like behaviour

Can we keep monitoring lightweight for most

processes and dynamically adapt it only for those with suspicious behaviour?

MUSTARD

- Multi-Stage Adaptive Ransomware Detection
- It cascades increasingly complex ML models (stages) with an increasing number of input features
- Most monitored processes use few simpler features and models
- Only suspected ransomwares activate more complex ones

MUSTARD workflow

- Monitor a new process with a single or few feature(s) and periodically run the ML model of the first stage
- Move to next stages (i.e. collect more features and select a more complex model) based on the process behaviour
- Declare a process as ransomware once it positively triggers the ML model of the last stage

	Detection latency	Additional ticks wrt baseline		
	(baseline)	MS(1,6)	MS(1,3,6)	<i>MS</i> (1,2,3,4,5,6)
min	3.0	+3.0	+6.0	+15.0
avg	8.2	+4.4	+8.6	+20.1
95p	41.2	+14.0	+17.0	+45.0
max	241.0	+49.0	+151.0	+166.0

\Orchestrating a brighter world **E**

- Dataset: 6 features derived from filesystem events [1] Baseline and per-stage ML model based on [2]
- Events are slotted in *ticks*
- Per-tick features are fed to a binary Random Forest classifier
- Process declared ransomware after K consecutive malicious ticks
- The baseline model uses all the features all the time

- Preliminary implementation
 - Static sequence of stages and corresponding features
 - Early stages should
 - minimize the monitoring overhead (avoid heavy monitoring for most processes)
 - prioritize Recall over Precision (minimize FN over FP)

MUSTARD can keep detection performance, reducing the monitoring overhead at the cost of a small increase in the detection latency

Next steps

Refine the monitoring adaptation logic: monitoring overhead vs risk mitigation trade-off

Perform a complete evaluation of the monitoring costs by collecting a new dataset

Full implementation (e.g. based on eBPF framework)

References:

[1] ShieldFS dataset: <u>http://shieldfs.necst.it</u>

[2] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi, S. Zanero, and F. Maggi, "ShieldFS: a self-healing, ransomware-aware filesystem", In ACSAC 2016

This work has received funding from the European Union's H2020 research and innovation programme under grant agreements n. 883335 ("PALANTIR") and n. 101017171 ("MARSAL").

© NEC Corporation 2022