EWSDN “15 — Oct 2, 2015

Traffic Management Applications
for Stateful SDN Data Plane

Carmelo Cascone”, Luca Pollini*, Davide Sanvito*, Antonio Capone”

ANTLab - Politecnico di Milano” CNIT*

Dipartimento di Elettronica, Informazione Consorzio Nazionale Interuniversitario
e Bioingegneria per le Telecomunicazioni

CInuit

Supported by EU project:

Bepbdg

BEhavioural BAsed forvvordmg

Goal

* Highlight shortcomings of current SDN-OpenFlow paradigm

I"

* Present a new “stateful” data plane model

* Motivate this need with 2 application examples
— Failure recovery
— Forwarding consistency

OpenFlow recap

Logically-centralized control

Events from switches
Topology changes,
Traffic statistics,
Arriving packets

e

SMART!

Commands to switches
(Un)install rules,
Query statistics;

Centralized control: we know the pros but...

e Control latency
— Switch-controller RTT
— Controller processing

 Signaling overhead
— First packet to the controller (Internet dominated by very short flows)
— Flow statistics gathering

Example: failure recovery in OpenFlow (1)

Backup path

primary path

“Fast-failover”:
Local reroute based
on port status
(OpenFlow 1.1+)

Weak! What if a
local reroute in not
available?

Example: failure recovery in OpenFlow (2)

Link status

Flow entries change

update

FESingle point of failure!

e Can rely on controller intervention, but:

— Long recovery latency (> 50ms)
- detection + signaling + flow table update
— Failure of control channel

—Signaling congestion (e.g. multiple failures, disasters)

Towards a new behavioral data plane model

Stateless model
(e.g. OpenFlow)

Controller
Global + local states

A

SMART!

1 static
forwarding
behavior

Event
notifications

v

Switch

|
Stateless DUMB:

Control enforcing paradigm

Stateful (behavioral) model

Controller

Global states SMART!

Multiple forwarding
Auto-adaption behawors.
+ adaptation rules

G v
Switch

Local states

SMART!

Control delegation paradigm

Easier said than done

e We need a switch abstraction and API which is...

— High performance: control tasks executed at wire-speed (packet-based
events)

— Platform-independent: consistent with vendors’ needs for closed platforms
— Low cost and immediately viable: based on commodity HW

e Apparently, far beyond OpenFlow switches...
* Our finding: much closer to OpenFlow than expected

Our approach: OpenState

* ldea: forward packets based on “flow states”

— Maintained by the switch
— Autonomously updated as a consequence of local events (i.e. match, timers)

* FSM-like forwarding model Event

<actions>

OIS

 [CCR’14] G. Bianchi, M. Bonola, A. Capone, C. Cascone, “OpenState: programming platform-independent
stateful OpenFlow applications inside the switch”, ACM SIGCOMM Comp. Comm. Rev., April 2014

« [HPSR’15] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, C. Cascone, “Stateful OpenFlow: Hardware Proof
of Concept”, IEEE High Performance Switching and Routing, July 2015

* Minimal extension to OpenFlow

10

Key extractor
(lookup-scope)

OpenState: 2 table approach

Almost classic OpenFlow

Key extractor
(update-scope)

State table Flow table _
Key | State |Timeouts| pkt Match | Actions | Timeouts Epkt
+ state: + actions
any |default| n/a :i
A e rT T e T T T e e TR e e T e e e :

>

Flow key extractors

* Used to match/access the state table
— Lookup or update phase

* Scope = ordered list of header fields
—E.g. {ip_src} = 32 bit flow key
—E.g. {eth_src, eth_dst} - 96 bit flow key

State table Flow table
sesssssssnsnnnnn, Key | State |Timeouts| pkt Match [Actions | Timeouts | pkt
Pt % ["Key extractor 1'> .. |+state | | +actions
: [lookup-scope) |=
 remssmssssmmnnnd " [any |default| n/a
LLLLLLLY Aennannnn,

=[Key extractor
*| (update-scope)

State table

* Exact match on flow key

— Efficient implementation in RAM (vs. TCAM)

 DEFAULT state if table miss
* Optional timeouts

— Idle or hard: equivalent to OpenFlow

— <= 1ms granularity

— Rollback state when timeout expires
— Configured by set_state() action

pkt
_>.

Key extractor
(lookup-scope)

State table

Key | State |Timeouts

"okt

E+ state

Flow table

Match | Actions | Timeouts | pkt
+ actions

= | any |default n/a

AT * lllllllll

Key extractor
(update-scope)

set_state(new_state, timeouts)14

Pipeline configuration

Tables are stateless at switch boot.
The controller can then configure one
or more tables as stateful.

Controller

1) Set lookup-scope
2) Set update-scope
Classic OpenFlow 3) Populate flow table (FSM description)

table (stateless)

\

packets
—» Table0 — Table Table 2 L. Table N [—>

!

OpenState
stateful stage

Open source: http://www.openstate-sdn.org

* Running code: softswitch + controller
— Based on CPgD ofsoftswitch13, RYU
— Initial support to Open vSwitch based on “learn()” action

* Protocol specification
— OpenFlow 1.3 Experimenter Extension (PDF available)

* Mininet-based application examples

— MAC learning, port knocking firewall, failure Recovery, DDoS detection and
mitigation, load balancing

* Download & try!

15

Failure recovery

Failure recovery with OpenState

* Tags (e.g. MPLS labels) used to distinguish between different forwarding
behaviors

* Upon failure, packets are “bounced back” with special tag
— until matched against a node able to respond to that specific failure

* Periodic probe to re-establish forwarding on the primary path

match tag

State transition! / 8
‘\\ _-- port down
O——= == — 00—

=» No extra signaling/packet loss after failure detection
=» Controller not involved (besides initial provisioning)

17

Behavioral model (FSM)

» Each flow (lookup-scope) has an associated state (tag)

— 0 (default) - all good, forward on primary path
—Fi node i unreachable - forward on detour i-th
— Pi node i must be probed - send 1 probe to node i

any packet any packet
<fwd(primary path)> <push_tag(Fi), fwd(detour i-th)>

tag=Fi

<fwd(detour i-th)> hard_timeout=0

Pi

(link i probe)

tag=Pi any packet
<drop()> <push_tag(Fi), fwd(detour i-th)>
<push_tag(Pi); fwd(primary path)>

18

Failure recovery

Example

Normal conditions (no failures)

state = 0 7 @\d
(1) e 5 @
N\ VM

o S
I~ A S\

PKT ‘ primary path
lookup-scope=[eth_src, eth_dst] L2 flows
update-scope=[eth_src, eth_dst]

State table Flow table

Key ___State | Match ___________Instructions

src=1, dst=6, state=0 fwd(3)

“(any) 0

19

Failure recovery

Example

Packets “bounced back” in case of failure

match tag F4
state — F4

8

_-- port down

(1)

PKT

//

\4) O/

©

src=1, dst=6 Group(1)
Group table
ID Type Action buckets
1 FAST-FAILOVER <output(2)>,

<push_tag(F4), output(1)>,

20

Failure recovery

Example

State transition at a pre-determined reroute node

match tag F4
state — F4

8

_-- port down

~/—()

Match ________instructions____________[EIVEE

<fwd(primary path)>

src=1, dst=6, state=0

fwd(3)

1 tag=Fi

src=1, dst=6, tag=F4

set_state(F4, hard_to=10s,
hard_rollback=P4)

fwd(7)

tag=Pi
<drop()>

L<fwd(detour i-th)>

5—)

any packet
<push_tag(Fi), fwd(detour i-th)>

hard_timeout=0

Pi
(link i probe)

any packet
<push_tag(Fi), fwd(detour i-th)>
<push_tag(Pi); fwd(primary path)> 21

Failure recovery

Example

Detour path enabled

state = F4 detour 4
\\\ ,
1 o N A () O
. \2) B)—/—4) BI——A6
PKT ‘ PKT
any packet |r ;n; ;a:k;t- -------- -I

src=1, dst=6, state=F4 push_tag(F4), fwd(7)

<fwd(primary path)> |<,oush tag(Fi), fwd(detour i-th)> |

tag=Fi

<fwd(detour i-th)> hard_timeout=5%

Pi
(link i probe)

tag=Pi any packet
<drop()> <push_tag(Fi), fwd(detour i-th)>
<push_tag(Pi); fwd(primary path)>

22

Failure recovery

Example

State hard timeout to generate probe packets

timeout
State — P4 8
\\
‘\
any packet any packet
<fwd(primary path)> <push_tag(Fi), fwd(detour i-th)>

tag=Fi
<fwd(detour i-th)>

hard_timeout=0

src=1, dst=6, state=P4 set_state(F4, hard_to=10s,

hard_rollback=P4), A o e -a Fy-p ;cT(e-t _____ 1

h_tag(F4), fwd(7 ag=Fi I
zgﬂzh_’[zggP 4))’ fvv\\,/d((S))i <drop()> : <push_tag(Fi), fwd(detour i-th)> |
- ’ I <push_tag(Pi); fwd(primary path)> |
________________ d

23

Failure recovery

Example

Primary path re-established

match tag P4
state — 0

\
\

\
N

S ,‘N

2 1

PKT

<1) i
W

‘ drop

tag=P4

set_state(0), drop()

8
S =\ >/ O,
any packet any packet
<fwd(primary path)> <push_tag(Fi), fwd(detour i-th)>

tag=Fi

<fwd(detour i-th)> hard_timeout=>%

|r tag=Pi 1| any packet
I <drop()> | <push_tag(Fi), fwd(detour i-th)>
e e e e e | <push_tag(Pi); fwd(primary path)>

24

Failure recovery

Example

Failure solved

primary path

src=1, dst=6, state=0 fwd(3)

25

Load balancing

Load balancing in OpenFlow

* OpenFlow SELECT group entry
— Packets forwarded using only one of multiple defined action buckets
— Implementation left out to vendors (e.g. round robin, hash-based, etc)

e Usually implemented with ECMP-like hash-based schemes
— Can’t decide on which header fields

— Two or more elephant flows can collide on their hash, using the same path,
hence creating a bottleneck
— Current OF solutions:

* reactive allocation (first packet to controller)
- detection and relocation based on periodic flow statistic gathering

27

Better idea: flowlet-based load balancing

 Originally introduced in FLARE (2007)*

— Based on the idea of switching bursts of packets (flowlets) instead of pinning
the whole flow to one path

— No packet reordering if the idle time between bursts is larger than the
maximum delay difference between parallels paths

— No need to worry about elephant flows (burden shared among all paths)

]
idle_time delay
@ .- - < >,§>--- L] @
delay?2
EmEm

No packet reordering if idle_time > |delayl - delay?2 |

*S. Kandula, D. Katabi, S Sinha, and A. Berger, “FLARE: Dynamic load balancing without packet reordering”.
ACM SIGCOMM Computer Communication Review, 2007.

OpenState-based implementation

e States used to distinguish between consecutive bursts/instances of

the same flow

e State idle timeouts to define the lifetime of a forwarding decision
— sub-RTT scales for flowlet switching

select port 1
<output(1)>

Ietimeout=6

select port N
<output(N)>

any packet
<output(N)>

idle_timeout=0

any packet
<output(1)>

lookup_scope=[ip_src, ip_dst,tcp_src, tcp_dst]

Legend: o h
Event ' update_scope=[ip_src, ip_dst, tcp_src, tcp_dst]
<per-packet actions> | State table Flow table
Key State Timeouts | Match Instructions |
AB,xy 1 idle_to=0 ip_dst=A, state=0 group(1)
ip_dst=B, state=0 group(2)

0 n/a state=1 output(1)
state=2 output(2)
state=N output(N)

Group table
GroupID Type Action buckets
1 SELECT <set_state(1, idle_to=08), output(1)>,
<set_state(2, idle_to=06), output(2)>,
2 SELECT

Example results: failure recovery

 OF: OpenFlow-based reactive approach, 80 |
controller establishes backup path (with +8|E éZmS
. . —i— ms
different switch-controller RTTs) @ ool | OF 3ms i
* OS: OpenState-based approach, packets 8 _ o OF Oms
bounced back upon failure ; —x— 08
9 demands affected ° 40 - -
by link failure B =
2 //
£
S20| / :

) \ \ \ \
0 50 100 150 200
Traffic rate [packet/ sec]

Optimal routing that minimizes bounce path based on:

A. Capone, C. Cascone, A. Q. Nguyen, and B. Sanso. “Detour planning for fast and reliable failure recovery in SDN with OpenState”.
In IEEE Design of Reliable Communication Networks (DRCN), March 2015

Example results: load balancing

* OF: controller-based reactive approach,
new connections allocated by controller

* OVS: same as OF, but with faster switch
(Open vSwitch)

* OS: OpenState-based approach

12ms
switch-controller RTT

500

W
(@)
(@)

—
(@)
@)

Switch processing time [ms]

|
—eo— OF
—m— OVS
—~<—0S
& & & o
500 1,000 1,500 2,000

New connections rate [req/sec]

Conclusions

New stateful data plane model - OpenState
— Control «decided» at controller, «execution» delegated to switches’ data plane)

Running code available at: http://www.openstate-sdn.org
— Openflow 1.3 extension

Failure recovery
— Switches pre-loaded with backup routing
— MPLS labels use to perform failure signaling/path probing
— Almost 0 packets lost after failure detection

Load balancing
— Can implement flowlet-based scheme
— No need for elephant flows handling
— Controller initially configure group table with optimal state idle timeouts

32

http://www.openstate-sdn.org/
http://www.openstate-sdn.org/
http://www.openstate-sdn.org/

3 [mls]ele

BEhavioural BAsed forwarding

http://www.beba-project.eu

e Started January 2015

* Technical plans:

— Propose OpenState for standardization R
— SW switch acceleration + HW prototype Clnt 1t
— Advanced security, forwarding and monitoring applications

e THALES
— Data plane verification e
— Real field large scale experimentation 6\7\/[/\/[7 :
oS T Sy

NEC :sxmu:

% VETENSKAP %
" &9 OCH KONST o%
a Ty Horizon 2020

L, B o5
PSP European Union Funding S:CESNET CIHES
ahle for Research & Innovation .

http://www.beba-project.eu/
http://www.beba-project.eu/
http://www.beba-project.eu/

Thanks!

carmelo.cascone@polimi.it

34

mailto:carmelo.cascone@polimi.it

