
Traffic Management Applications
for Stateful SDN Data Plane

Carmelo Cascone^, Luca Pollini*, Davide Sanvito*, Antonio Capone^

EWSDN ’15 – Oct 2, 2015

ANTLab - Politecnico di Milano^
Dipartimento di Elettronica, Informazione

e Bioingegneria

CNIT*
Consorzio Nazionale Interuniversitario

per le Telecomunicazioni

Supported by EU project:

1

Goal

• Highlight shortcomings of current SDN-OpenFlow paradigm

• PreseŶt a Ŷeǁ ͞stateful͟ data plaŶe ŵodel
• Motivate this need with 2 application examples

– Failure recovery

– Forwarding consistency

2

OpenFlow recap

3

Logically-centralized control

DUMB!

SMART!

Events from switches
Topology changes,
Traffic statistics,
Arriving packets

Commands to switches
(Un)install rules,
Query statistics,
Send packets

Centralized control: we know the pros but…

• Control latency

– Switch-controller RTT

– Controller processing

• Signaling overhead

– First packet to the controller (Internet dominated by very short flows)

– Flow statistics gathering

4

Weak! What if a

local reroute in not

available?

1 2

7 8

PKT primary path

3 4 5 6

͞Fast-failoǀer͟:
Local reroute based

on port status

(OpenFlow 1.1+)

Example: failure recovery in OpenFlow (1)

Backup path

6

Link status

change

1 2

7 8

PKT

3 4 5 6

Example: failure recovery in OpenFlow (2)

controller

Flow entries

update

฀฀ Single point of failure!

• Can rely on controller intervention, but:

– Long recovery latency (> 50ms)

· detection + signaling + flow table update

– Failure of control channel

– Signaling congestion (e.g. multiple failures, disasters)

7

Towards a new behavioral data plane model

Switch
Stateless

Controller
 Global + local states

Switch
Local states

Controller
Global states

1 static

forwarding

behavior

Multiple forwarding

behaviors

+ adaptation rules

Stateless model

(e.g. OpenFlow)
Stateful (behavioral) model

SMART!

DUMB! SMART!

SMART!

Auto-adaption

Event

notifications

8
Control enforcing paradigm Control delegation paradigm

Easier said than done

• We need a switch abstraction and API which is…

– High performance: control tasks executed at wire-speed (packet-based
events)

– Platform-independent: ĐoŶsisteŶt ǁith ǀeŶdors’ Ŷeeds for Đlosed platforms

– Low cost and immediately viable: based on commodity HW

• Apparently, far beyond OpenFlow switches…

• Our finding: much closer to OpenFlow than expected

9

Our approach: OpenState

• Idea: forǁard paĐkets ďased oŶ ͞floǁ states͟

–Maintained by the switch

– Autonomously updated as a consequence of local events (i.e. match, timers)

• FSM-like forwarding model

• Minimal extension to OpenFlow

• [CCR ’14] G. Bianchi, M. Bonola, A. Capone, C. Cascone, ͞OpeŶ“tate: prograŵŵiŶg platforŵ-independent

stateful OpeŶFloǁ appliĐatioŶs iŶside the sǁitĐh͟, ACM SIGCOMM Comp. Comm. Rev., April 2014

• [HPSR ’15] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, C. Cascone, ͞“tateful OpeŶFloǁ: Hardǁare Proof
of CoŶĐept ,͟ IEEE High Performance Switching and Routing, July 2015

S0 S1

Event

<actions>

10

OpenState: 2 table approach

Almost classic OpenFlow

11

Flow key extractors

• Used to match/access the state table

– Lookup or update phase

• Scope = ordered list of header fields

– E.g. {ip_src} → ϯϮ ďit flow key

– E.g. {eth_src, eth_dst} → 96 ďit flow key

12

State table

• Exact match on flow key

– Efficient implementation in RAM (vs. TCAM)

• DEFAULT state if table miss

• Optional timeouts

– Idle or hard: equivalent to OpenFlow

– <= 1ms granularity

– Rollback state when timeout expires

– Configured by set_state() action

13

Pipeline configuration

14

 1) Set lookup-scope

 2) Set update-scope

3) Populate flow table (FSM description)

OpenState

stateful stage

Classic OpenFlow

table (stateless)

Tables are stateless at switch boot.

The controller can then configure one

or more tables as stateful.

Open source: http://www.openstate-sdn.org

• Running code: softswitch + controller

– Based on CPqD ofsoftswitch13, RYU

– IŶitial support to OpeŶ ǀ“ǁitĐh ďased oŶ ͞learŶ;Ϳ͟ action

• Protocol specification

–OpenFlow 1.3 Experimenter Extension (PDF available)

• Mininet-based application examples

–MAC learning, port knocking firewall, failure Recovery, DDoS detection and
mitigation, load balancing

• Download & try!

15

Failure recovery

16

Failure recovery with OpenState

• Tags (e.g. MPLS labels) used to distinguish between different forwarding
behaviors

• Upon failure, packets are ͞ďouŶĐed ďaĐk͟ with special tag
– until matched against a node able to respond to that specific failure

• Periodic probe to re-establish forwarding on the primary path

 No extra signaling/packet loss after failure detection

 Controller not involved (besides initial provisioning)

1 2 3 4 5

7 8

6

PKT

TAG PKT

match tag

state transit ion!

//

port down

17

Behavioral model (FSM)

• Each flow (lookup-scope) has an associated state (tag)

– 0 (default) → all good, forǁard oŶ priŵary path

– Fi node i uŶreaĐhaďle → forǁard oŶ detour i-th

– Pi node i ŵust ďe proďed → seŶd ϭ proďe to Ŷode i

18

1 2

7 8

PKT

state = 0

primary path

3 4 5 6

Match Instructions
src=1, dst=6, state=0 fwd(3)

… …

… …

Key State
… …

… …

* (any) 0

lookup-scope=[eth_src, eth_dst]

update-scope=[eth_src, eth_dst]

State table Flow table

L2 flows

Failure recovery

Example

Normal conditions (no failures)

19

Failure recovery

Example

PaĐkets ͞ďouŶĐed ďaĐk͟ iŶ Đase of failure

Match Instructions

src=1, dst=6 Group(1)

… …

… …

ID Type Action buckets

1 FAST-FAILOVER <output(2)>,
<push_tag(F4), output(1)>,

… … …

Group table

1 2 3 4 5

7 8

6

PKT

F4 PKT

match tag F4

state → F4

//

port down

20

1 2 3 4 5

7 8

6

PKT

F4 PKT

match tag F4

state → F4

//

port down

Failure recovery

Example

State transition at a pre-determined reroute node

Match Instructions

… …

src=1, dst=6, state=0 fwd(3)

src=1, dst=6, tag=F4 set_state(F4, hard_to=10s,
 hard_rollback=P4)
fwd(7)

… …

21

1 2 3 4 5

7 8

6

PKT

F4 PKT

PKT

//

detour 4state = F4

Failure recovery

Example

Detour path enabled

Match Instructions

… …

src=1, dst=6, state=F4 push_tag(F4), fwd(7)

… …

… …

22

1 2 3 4 5

7 8

6

PKT P4 PKT

timeout

state → P4
F4 PKT

//

drop

Failure recovery

Example

State hard timeout to generate probe packets

Match

… …

… …

… …

src=1, dst=6, state=P4 set_state(F4, hard_to=10s,

 hard_rollback=P4),

<push_tag(F4), fwd(7)>
<push_tag(P4), fwd(3)>

23

1 2 3 4 5

7 8

6

PKT

P4 PKT

match tag P4

state → 0

drop

Failure recovery

Example

Primary path re-established

Match

… …

… …

… …

… …

tag=P4 set_state(0), drop()

24

Failure recovery

Example

1 2

7 8

PKT

state = 0

primary path

3 4 5 6

Failure solved

Match Instructions
src=1, dst=6, state=0 fwd(3)

… …

… …

25

Load balancing

26

Load balancing in OpenFlow

• OpenFlow SELECT group entry

– Packets forwarded using only one of multiple defined action buckets

– Implementation left out to vendors (e.g. round robin, hash-based, etc)

• Usually implemented with ECMP-like hash-based schemes

– CaŶ’t deĐide oŶ ǁhiĐh header fields

– Two or more elephant flows can collide on their hash, using the same path,
hence creating a bottleneck

– Current OF solutions:

· reactive allocation (first packet to controller)

· detection and relocation based on periodic flow statistic gathering

27

Better idea: flowlet-based load balancing

• Originally introduced in FLARE (2007)*

– Based on the idea of switching bursts of packets (flowlets) instead of pinning
the whole flow to one path

–No packet reordering if the idle time between bursts is larger than the
maximum delay difference between parallels paths

– No need to worry about elephant flows (burden shared among all paths)

No packet reordering if idle_time > |delayϭ − delay2|

* S. Kandula, D. Katabi, “ “iŶha, aŶd A. Berger, ͞FLARE: DyŶaŵiĐ load balancing without packet reorderiŶg .͟
ACM SIGCOMM Computer Communication Review, 2007. 28

OpenState-based implementation

• States used to distinguish between consecutive bursts/instances of
the same flow

• State idle timeouts to define the lifetime of a forwarding decision

– sub-RTT scales for flowlet switching

29

Example results: failure recovery

fic fic

influenced

“Port Status” notification
flo

significant
fic

benefit

define

“BEB ”

“P4:
”

87–95,
“Flo

”
Defined

’14, 61–66.
“OpenState:

”
44–51,
“OpenState ”

“Stateful openflo ”

“F
”

99–110,
“Protocol-obli

”
Defined

’13, 127–132.
“HP ”

“Openflo ”

“Changing
”

“Proposal ”

“Performance
”

332–341.
“Dynamic

”
51–62,

“Softw defined ”

1–6.
“Detour

”

“CPqD ”

“SNDlib
” 276–

“BEB ”

0 50 100 150 200
0

20

40

60

80

Traffic rate [packet/ sec]

N
u
m

b
er

o
f

lo
st

p
ac

k
et

s

OF 12ms

OF 6ms

OF 3ms

OF 0ms

OS

fic

influenced

“Port Status” notification
flo

significant
fic

benefit

define

“BEB ”

“P4:
”

87–95,
“Flo

”
Defined

’14, 61–66.
“OpenState:

”
44–51,
“OpenState ”

“Stateful openflo ”

“F
”

99–110,
“Protocol-obli

”
Defined

’13, 127–132.
“HP ”

“Openflo ”

“Changing
”

“Proposal ”

“Performance
”

332–341.
“Dynamic

”
51–62,

“Softw defined ”

1–6.
“Detour

”

“CPqD ”

“SNDlib
” 276–

“BEB ”

• OF: OpenFlow-based reactive approach,

controller establishes backup path (with

different switch-controller RTTs)

• OS: OpenState-based approach, packets

bounced back upon failure

9 demands affected

by link failure

Optimal routing that minimizes bounce path based on:
A. Capone, C. Cascone, A. Q. Nguyen, and B. “aŶs̀. ͞Detour planning for fast and reliaďle failure reĐoǀery iŶ “DN ǁith OpeŶ“tate .͟
In IEEE Design of Reliable Communication Networks (DRCN), March 2015

30

Example results: load balancing

• OF: controller-based reactive approach,

new connections allocated by controller

• OVS: same as OF, but with faster switch

(Open vSwitch)

• OS: OpenState-based approach

31

12ms

switch-controller RTT

Conclusions

• Neǁ stateful data plaŶe ŵodel → OpeŶ“tate
– Control «decided» at controller, «execution» delegated to switches’ data plane)

• Running code available at: http://www.openstate-sdn.org
– Openflow 1.3 extension

• Failure recovery
– Switches pre-loaded with backup routing

– MPLS labels use to perform failure signaling/path probing

– Almost 0 packets lost after failure detection

• Load balancing
– Can implement flowlet-based scheme

– No need for elephant flows handling

– Controller initially configure group table with optimal state idle timeouts

 32

http://www.openstate-sdn.org/
http://www.openstate-sdn.org/
http://www.openstate-sdn.org/

33

• Started January 2015

• Technical plans:

– Propose OpenState for standardization

– SW switch acceleration + HW prototype

– Advanced security, forwarding and monitoring applications

– Data plane verification

– Real field large scale experimentation

http://www.beba-project.eu

http://www.beba-project.eu/
http://www.beba-project.eu/
http://www.beba-project.eu/

Thanks!
carmelo.cascone@polimi.it

34

mailto:carmelo.cascone@polimi.it

