SPIDER: Fault Resilient SDN Pipeline
with Recovery Delay Guarantees

Carmelo Cascone* T, Luca Pollini®, Davide Sanvito”, Antonio Capone*, Brunilde Sansot

* Politecnico di Milano, Italy
ACNIT — Consorzio Nazionale Universitario per le Telecomunicazioni, Italy
T Ecole Polytechnique de Montreal, Canada

Supported by EU Project

.é BEhavioural BAsed forwarding

S . #,m % POLYTECHNIQUE
G 4}y, MONTREAL
(: I l S o LE GENIE
POLI N lCO [Gaucs EN PREMIERE CLASSE

MILANO 1863

Outline

Motivations

Goal

SPIDER
Numerical results

~
Univesity of Rome Tor Vergata

CIn [\L lt Politecnico di Milano

University of Pisa

NEC

THALES

@iﬁCESNET

Bepd 3

BEhavioural BAsed forwording

www.beba-project.eu

Horizon 2020
European Union Funding
for Research & Innovation

e European H2020 research project
e Started January 2015

e Goal: programmable stateful packet
processing in the fast-path

— Allow pre-configuration of different sets of forwarding
rules to be applied according to the observed network
state

— in-switch fast state evolution according to packet-level
events/time-based events/flow level measurements

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 3

Fault Resiliency in SDN

e Weak support by current data plane abstractions
e OpenFlow

— Stateless match+action
— requires remote controller to reconfigure the forwarding

= Additional overhead and latency = hard to obtain carrier-grade recovery times (<50 ms)
— Fast-Failover group type:

= |imited to local failures protection

= Liveness checking out of spec. 2 No guarantees on detection delays (1ms — 500ms)

Related Works

* Integration of a BFD deamon with OF Fast-Failover
e fine-tuning of parameters in Open vSwitch’s BFD process
 OF extension to implement in-switch link monitoring functions

 OF extension with a flow entry auto-rejecting mechanism based on
port status

Mainly based on patching OF Fast-Failover and BFD = slow-path

SPIDER Goal

 Provide a forwarding pipeline design to allow:

— End-to-end proactive protection independent from controller reachability
— Programmable sub-milliseconds detection delay

* Inspired by legacy technologies

— BFD
— MPLS Fast Reroute

Stateful Dataplane

Switch mantains flow memory across different packets
Forwarding is based on packet fields and current flow state

The controller can delegate to switches local changes in the
forwarding

OpenState

e Stateful dataplane

— Statefulness in the fast-path = state updates at wirespeed!

e Stateful OpenFlow extension
e Pipeline of stateless/stateful stages
 Forwarding behaviour modeled as Finite State Machine (FSM)

[CCR ’14] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Programming Platform-independent Stateful OpenFlow Applications Inside the
Switch” ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 44-51, 2014

[HPSR ’15] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, C. Cascone, “Stateful Openflow: Hardware Proof of Concept”, IEEE HPSR 2015, Budapest, July 1-
4,2015

Other examples of stateful dataplane
e OVS: learn() action e P4: stateful memories

— OF extension = slow-path only — We can describe OpenState

OpenState Stateful Stage

e State Table

— Associates a flow key (exact match) with a state
— Flow key extractor (lookup-scope and update-scope)

STATELESS STAGE STATEFUL STAGE STATELESS STAGE
* Flow Table i T S| mM»
— Classic OF match+action table » » »

— New state match field

ew set state action STATE TABLE FLOW TABLE

ey | state | Timeouts JI watch | Acton | Tmeous |
%

Update key set state action
extractor <€

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 10

—

Lookup key
extractor

FSM

OpenState stateful forwarding abstraction is based on FSM
Forwarding depends on current state + packet header fields
State transitions

— Packet-driven
— Time-based

FSM structure is defined by the controller at boot-time
— by inserting fow table entries P

— by configuring lookup-scope and update-scope C Q
The switch executes the FSM at run-time / \

— by storing flow states in the state table TTeeeeoeo

— by updating the states

SPIDER

Stateful Programmable fallure DEtection and Recovery

Fault resilient SDN pipeline design
Fully programmable failure detection and recovery in the fast-path

- Sub-milliseconds detection&reroute (device timeout granularity)

Based on stateful dataplane abstraction

- Implementation in OpenState

Instantaneous in-switch recovery from any pre-planned failure scenario

— Controller intervention needed only in case of un-planned failures

Programmable failure detection Legend:
— BFD-like T . — Packets
Fast reroute ;""’::::’"‘ "'“‘:: Y "'"‘} ----I> State updates
— Inspired by MPLS _ Table 0 —®| Table 1 ;b F;rlibllessl —> I:rliki-lglf;l ’—D-. Output port(s)
— For both local and non-local failures

— Path probing
— Flowlet-aware rerouting

Preplanning of Primary/Backup Paths

* QGiven:
— network topology
— set of demands
We need to provide the controller with a set of primary path (PP) and backup
paths (BP) for each possible failure affecting the PP of a given demand.

 The controller then creates the switch pipeline configuration
— FSM instantiation
— Flow table entries
— Forwarding based on L2 src-dst addresses and MPLS label

[DRCN 2015] A. Capone, C. Cascone, A. Q.T. Nguyen, and B. Sanso, “Detour Planning for Fast and Reliable Failure Recovery in SDN with OpenState”

Failure Detection

b

Assumption:

As long as packets are received from a given y—

h .
port, that port can be also used to transmit L_a ~— S—
packets [

h

B

h

e

* If no packet is received from port x within a 6, interval:

— Next data packet towards port x is tagged with a special value (Heartbeat request)

— Port x is declared down if adjacent node does not send back a copy (Heartbeat reply) within a 62
interval

 Configurable trade off: overhead vs. failover responsiveness

— Heartbeat requests generation timeout (61)
— Heartbeat reply timeout (62) before the port is declared down

e Guaranteed max detection delay: 61 + 62

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016

- i

14

Failure Detection FSM

6, = HB requests generation timeout
6, = HB reply timeout

Lookup-scope = [metadata]
Update-scope = [metadata]

data pkt
<fwd{outport)>

hard_to = &, O
UP: need
UP: wait
heartbeat data pkt
Any packet arriving <Tag HB, fwd(outport)>
at outport
UP: heartheat data pkt
requesbed <fwd(outport)>

hard_to = 6,

DOWN

data pkt

<Tag F, fwd(backup)>

Fast Reroute (local)
B Zint "N

._757 ~ __7—/

MPLS label used to distinguish between different forwarding :

— No tag - forward packet on the primary path
— tag=Fi - forward packet on the detour for the i-th failure

Zero losses after failure detection
No controller intervention
What if no local alternative path is available?

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016

16

Fast Reroute (remote) oo

e Packets are tagged and bounced back up F1 tagged data pkt Q i
. . Fwd(back
to a proper redirect point) W% Fud(backup)>

e Tagged packets trigger a state transition:

— updating the routing of the involved connections En tagged data pkt
* Still zero losses after failure detection! o C <FWd‘ba°"“'°)>
atap
e Tagged data packets as signalling <Fwd(primary)> \—/
. . d k
e No controller intervention! 3?;;
Fwd(backup)>

< R (e \ <
ol & & & & o & & &

PKT PKT PKT PKT PKT PKT PKT PKT

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 17

Path Probing

e How to restore the forwarding on the primary path?
 Programmable periodic probing for primary path availability

hard_to=6;
——————————— p—
- £ / -’\
y—" VA —
i a7 - v
dtopke e T

<Tag 2, fwd(backup)> <Tag F2, fwd(backup)>
<Tag P2, fwd(primary)>

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 18

Flowlet-aware Rerouting

Failover activation/deactivation can be post-poned

— Inorder to minimize out-of-sequence, packets are kept on the primary path up to expiration of a
burst of packets

— Programmable idle timeout/hard timeout

idle_to = 6;0r
Tagged data pkt coming back hard_to =46,
<fwd(backup)>

o ~

data pkt
signaled data pkt <Tag F1, fwd(backup)>

<fwd(primary)>

data pkt Tagged data pkt coming back
<fwd(primary)> <fwd(backup)>

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016

19

Putting all together: Fast reroute FSM

data pkt
< TagFl1,

F1tagged data pki
P phed(backup)>

<Fde
F/ntagged data pkt

o <Fwd(backup)>
Q data pkt
< Tag Fn,

Fwd(backup)>

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 20

Results: Detection Mechanism

»00 —
h Y 2
et - 5 - e~ 100ms
\-—7-’ 14 z 4001, a- s0ms ||
\—a \-a ‘E-C: \\‘\::. -+- 25ms
g glh Sas 10ms |
g]
Unidirectional demand h1->h2 @1000 pkt/s s AN
5 2000 e]
z A
The plot shows the number of packets Z Lo e o
) - SO e -e--9 - -@--
lost by tuning: ‘*3:;:;1_1._,___,__,__;
* Heartbeat requests generation timeout (6,) 0 SRR St S5F EEF SEP ==
. o © wvn o o v 0o ¥ o
e Heartbeat reply timeout (6,) S 2 & 2 ¢ -
01 [ms]

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 21

Results: Heartbeat Overhead

250 T 250 T T T
—— data —— data
--- HB_reply --- HB_reply
200 | — total] 200 5 — total

150

pkt/sec

Unidirectional demand h1->h2 @100 pkt/s s el | R N | |
Unidirectional demand h2->h1 from 200 to O pkt/s 0 20 4 6 8 100 0 0 40 60 80 100

sec SEeC

a) HB req rate = 70 pkt/sec b) HB req rate = 100 pkt/sec
HB_req_rate = 1/§, (a) HB_req pkt/ (b) HB_req pkt/

Hearbeat packets are requested only if incoming traffic rate is lower than 1/ 6,
Overhead does not affect link available capacity!

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 22

Results: comparison with OpenFlow

300 : | |
——=-0F FF (RTT 12ms)
—-— OF FF (RTT 6ms)
R OF FF (RTT 3ms)
2 —— SPIDER 4;=Ims ,r'f YA
ﬁ- /'/f'l...-"'lr "ﬁx;}
S 4 it
£ 100} A |
5 _J__.z'"._r"_'.'-f'll
We compared SPIDER to a reactive OF application: 7 j.f;,,»f" g
* failure detection with Fast-Failover Group Table f;.i;""‘ﬁf
* controller installs new forwarding rules ey , .
%0 10 20 30 10

Number of demands served by the switch

Losses in SPIDER: detection phase only
Losses in OF FF: detection phase + failover phase

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 23

Results: Complexity Analysis

NUMBER OF FLOW ENTRIES PER NODE.

. . . . 2
n x n grid networks with a traffic demand for Net D E C | mn avg max JFE"XN
each pair of outer nodes of the grid 5x5 240 16 9 443 775 968 6400
6x6 380 20 16 532 1115 1603 14400
7x7 552 24 25 | 795 1670 2404 || 28224
. . 2 B
Number of flow entries per node is O(E*xN) X8 756 28 36 | 1060 2232 3726 1350176
9x9 992 32 49 1368 2884 4509 82944
Worst case scenario: E2E path protection 10x10 1260 36 64 | 1188 3584 6153 | 129600
I1xI1 1560 40 81 1409 4249 7558 | 193600
_ o _ 12x12 1892 44 100 | 1185 5124 9697 || 278784
With a more efficient protection scheme 13x13 2256 48 121 | 2062 6218 11025 || 389376
(segment) we can even obtain a lower 14x14 2652 52 144 | 1467 7151 15436 | 529984
number of rules per node 15x15 3080 56 169 | 3715 8461 16347 || 705600
SPIDER worst Big-O
case scenario analysis
Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016 24

Software Implementation

e SW implementation based on OpenState

— Ryu* controller

— CPgD OpenFlow 1.3 softswitch* * P’
— https://github.com/OpenState-SDN/spider L

e SW implementationin P4
based on openstate.p4 library

— https://github.com/OpenState-SDN/openstate.p4

*modified with OpenState support http://openstate-sdn.org

25

https://github.com/OpenState-SDN/spider
https://github.com/OpenState-SDN/spider
https://github.com/OpenState-SDN/spider
https://github.com/OpenState-SDN/spider
https://github.com/OpenState-SDN/spider
https://github.com/OpenState-SDN/openstate.p4
https://github.com/OpenState-SDN/openstate.p4
https://github.com/OpenState-SDN/openstate.p4
http://openstate-sdn.org/
http://openstate-sdn.org/
http://openstate-sdn.org/

Conclusions

Failure detection and recovery in SDN (OpenFlow) is a major problem
Statefulness in the data plane allows to implement fast detection

and rerouting (<1ms)

— Indipendent on controller reachability
— With guaranteed detection delays

SPIDER is an example of a pipeline design providing such features

Thank you!

davide.sanvito@polimi.it

Davide Sanvito - SPIDER: Fault Resilient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016

27

BACKUP SLIDE

Example: port knocking

An |IP address is allowed to access an UDP server after a secret knock sequence is received.

UDP secret sequence: 10,11,12,13
UDP server port: 22

Port I=10 Port = 22
Drop() Port =10 Port =11 Port =12 Port = 13 Forward()
/i Drop() Drop() Drop() Drop()

Port =11 Port 1=12 Port I1=13 Port =22

Drop() Drop() Drop() Drop()

Example: port knocking (2)
3 = A 9 ’ prangmpm g e

OpenState
10.0.0.1 switch 10.0.0.2

Port 1=22
Drop()

Port |=13
Drop()

UDP secret sequence: 10,11,12,13 Port 1=11
UDP server port: 22

Drop()

Lookup key —y 10 flood!()

extractor S 10 state=0, ip, udp_dest=10 set_state(1), drop()
10 state=1, ip, udp_dest=11 set_state(2), drop()
Key extractors: 10 state=2, ip, udp_dest=12 set_state(3), drop()
Looku p-scope = {ip_src} 10 state=3, ip, udp_dest=13 set_state(4), drop()

Update-scope = {ip_SI’C} 10 state=4, ip, udp_dest=22 output(2)
Update key 0 ip, udp set_stlate(O), drop()

extractor NS

Davide Sena lient SDN Pipeline - NetSoft 2016 Seoul (Korea) - June 9, 2016

State table memory requirements

e Failure detection state machine

P state entries (where P is the number of ports)
5 possible states

* Failover state machine

D, state entries (D,, is the number of demands for which node n is a reroute node)
1 + 4F, possible states (where F_ is the number of remote failures managed by node n)

