ONOS Intent Monitor and Reroute service: enabling plug&play routing logic

Davide Sanvito*, Daniele Moro*, Mattia Gulli*, Antonio Capone*, Ilario Filippini*, Andrea Campanella^

* Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
^ Open Networking Foundation

IEEE Conference on Network Softwarization (NetSoft) 2018
27/06/2018
Intent-Based Networking

- High level network policies (*intentions*):
 - give connectivity between node A and node B
 - consider only HTTP traffic
 - reserve 100 Mbps bandwidth on the path
- Network complexity abstraction
- Intent submitted through North-Bound Interface (NBI) offered by SDN controller
 - *OpenDayLight*: Network Intent Composition interface
 - *ONOS*: Intent Framework
- Intent compilation hidden inside SDN controller
 - from high level *intentions* to low level *flow rules*
Open Network Operating System (ONOS)

- SDN Network Operating System built for Service Provider networks
- Intent Framework (in charge of intent compilation):
 - extensible (new intent and new compiler can be added)
 - recompilation in case of network failures
 - each intent is individually compiled
 - only shortest path logic for intent is available
Our objective

1. **Re-optimize the path** according to topology state and flow level statistics

2. **Different routing logic** other than shortest path

3. **Joint compilation** of multiple intents to consider a global network objective (e.g., minimizing Maximum Link Utilization - MLU -)

4. **No impact** on ONOS high performance (external routing logic)
Intent Monitor and Reroute Service

- IMR exposes statistics as a traffic matrix based on the intent to an Off-Platform Application (OPA)
 - Internally it keeps track of the Intent <-> FlowRule mapping
- OPAs can re-route an intent through IMR API specifying for each intent a specific path
- IMR gets intent statistics and intent re-compilation event from the Intent Manager
ONOS Integration

IMR enables:
- Decoupling of routing logic from application
- Plugging of external Traffic Engineering Schemes (e.g. ML/AI algorithms)
- Joint external re-compilation of multiple intents
IMR APIs (CLI/REST)

- ONOS applications or users can require the monitoring and re-routing of intents

- CLI APIs
 - `imr:startmon appID appName [intentKey]`
 - `imt:stopmon appID appName [intentKey]`

- REST APIs: external applications (OPAs) can retrieve statistics and require re-routing
 - `GET /intentStats[/appID/appName/intentKey]`
 - `POST /reRouteIntents`
 - `GET /monitoredIntents[/appID/appName/intentKey]`
ONOS application which enables SDN network to connect to legacy IP networks using Border Gateway Protocol (BGP) while appearing externally as a traditional Autonomous System (AS)

- both BGP peering and AS-to-AS traffic managed through intents
- Extended SDN-IP: all the transit traffic intents are monitored via IMR
Off-Platform Application Routing Logic

- OPA logic is independent from the application
 - collect TMs from ONOS via IMR’s REST API
 - apply the CRR (or the selected routing logic)
 - schedules the activation of the routing
 - applies the routing via IMR’s REST API

- Clustered Robust Routing (CRR) [1]
 - computes a set of robust routing configurations with a guaranteed minimum holding time
 - tunable trade off between completely dynamic and completely stable routing

Tests

- SDN-IP modified version (IMR integration)
- OPA + CRR application
- Emulation of Abilene backbone topology (using Mininet)
- Replay a subset of 3-days Traffic Matrices using iperf (we played 5 minutes of Abilene TM every 15 seconds)
Results

![Graph showing MLU % over days, comparing Legacy SDN-IP and Extended SDN-IP + CRR OPA](image-url)
Results - Dynamic

Normalized average MLU

<table>
<thead>
<tr>
<th>Relative noise α [%]</th>
<th>CRR</th>
<th>RR</th>
<th>dyn RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

IMR can improve network performances:
- decoupling routing logic from application
- integrating external routing logic
- providing per-intent statistics
- jointly (re)compiling multiple intents

Future Works
- gRPC support
- Multi path routing (ECMP)
- Monitoring of additional type of ONOS intents (now only Point To Point and Link Collection Intents are supported)
Open Source Contribution

- IMR integrated in ONOS 1.13.0 Nightingale

- Documentation
 https://wiki.onosproject.org/x/hoQgAQ

- Demo
 Intent FWD app + external greedy routing alg
 https://youtu.be/hS04pch1eAq
Thanks!
Questions?

daniele.moro@polimi.it