
Can the Network
be the AI Accelerator?

ACM SIGCOMM 2018 Workshop on In-Network Computing (NetCompute 2018), August 20, 2018

Davide Sanvito
Politecnico di Milano,

NEC Laboratories Europe

Giuseppe Siracusano
NEC Laboratories Europe

Roberto Bifulco
NEC Laboratories Europe

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 761493 "5GTANGO".



Artificial Neural Networks (ANN)
● Machine Learning tool
● Sequence of interconnected layers of neurons

○ Activation
○ Hyperparameters
○ MLP / CNN / RNN

● Training vs Inference

2



AI accelerators
● General-purpose GPU (GPGPU)

○ Parallel computing on large amount of data (SIMD)
○ High efficiency with large batches
○ Data movement overhead
○ Best suited for training

For latency sensitive 
services, NN inference 
is performed on CPUs!

3

● Tensor Processing Unit (TPU)
○ Custom ASIC dedicated to inference
○ Data transfer up to 76% of processing time



Our contributions

● Profiling the computation required by a NN inference on a CPU
● Analysis of the options to offload (a subset of) NN’s layers from the CPU to 

a different processor
● Evaluating under which conditions NIC and switches are suitable to work 

as CPUs co-processors for NN inference

4

● Programmable Network Devices
○ Network cards and switches
○ More than pure forwarding
○ Privileged position in an end-to-end system



Neural Networks inference workload
● NN inference workload in Google’s data centers

● Final portion of a CNN is a set of fc layers (MLP)

NN Workload

MLP 61%

RNN 29%

CNN 5%

5N. P Jouppi, et al. 2017. In-datacenter performance analysis of a tensor processing unit. 44th Annual International Symposium on Computer Architecture



AlexNet
● CNN for image classification
● Winner of ImageNet Large Scale Visual Recognition (ILSVRC) 2012

MLP
6A. Krizhevsky, et al. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems



Structural analysis

7



Runtime analysis
● Testbed

○ dual-socket (NUMA) machine with two CPUs Intel Xeon E5-2650 (8 cores@2.4GHz)
○ hyperthreading disabled
○ 16GB of RAM per socket
○ L1 data and instruction caches: 32KB per core
○ L2 cache: 256KB per core
○ L3 cache: 20MB shared by all the CPU’s cores

● Intel Caffe running on a single isolated core on a dedicated CPU
● Total and per layer inference latency
● Linux perf tool

○ Instructions Per Cycle rate (IPC)
○ Stalled cycles
○ L1 (data), L2, L3 cache misses

8



Inference latency

● conv layers processing is computation-bound
● fc layers processing is memory-bound

9



NN splitting
● CPUs are efficient executors for conv, pool and norm layers
● During fc layers, CPU’s pipeline is stalled for a large fraction of time
● Moving the execution of fc layers to another executor can:

○ reduce NN inference latency
○ free CPU resources for a better suited workload

10



NN splitting (2)
● NN execution has been splitted on two homogeneous executors

○ What’s the impact of splitted execution on inference latency?
○ What’s the communication overhead?

11

CPU

0
CPU

1
CPU

2
CPU

3
CPU

4
CPU

5
CPU

6
CPU

7

CPU

8
CPU

9
CPU

10
CPU

11
CPU

12
CPU

13
CPU

14
CPU

15

NUMA node 0 NUMA node 1

QPI

CPU

0
CPU

1
CPU

2
CPU

3
CPU

4
CPU

5
CPU

6
CPU

7

CPU

8
CPU

9
CPU

10
CPU

11
CPU

12
CPU

13
CPU

14
CPU

15

QPI

NUMA node 0 NUMA node 1



NN splitting overhead

12

CPU

0
CPU

1
CPU

2
CPU

3

CPU

4
CPU

5
CPU

6
CPU

7

CPU

8
CPU

9
CPU

10
CPU

11

CPU

12
CPU

13
CPU

14
CPU

15

QPI

NUMA node 0 NUMA node 1

CPU

0
CPU

1
CPU

2
CPU

3

CPU

4
CPU

5
CPU

6
CPU

7

CPU

8
CPU

9
CPU

10
CPU

11

CPU

12
CPU

13
CPU

14
CPU

15

NUMA node 0 NUMA node 1

QPI

● Higher overhead if split point is not 
carefully selected

In
cr

ea
se

 o
f

● What if on-path network devices 
could perform NN processing?



BaNaNa Split

13

● NN is splitted just before fc layers
● 1st portion of the NN is run on CPU
● Intermediate result is encapsulated in a packet
● 2nd portion of the NN is run on SmartNIC/switch

○ NN quantization

● Final result is written in the packet



PoC implementation

14

● BNN (Binary Neural Network)
○ activation and parameters are represented with 1 bit
○ bitwise logical operations and popcount only

● Extension of N2Net for network processor-based SmartNICs support
○ compiler from BNN description to P4 program to configure an RMT-like switch pipeline
○ popcount implementation leverages built-in support

● Micro-benchmark
○ single binarized fc layer with 4096 neurons (fc6)
○ activation vector and output (512B) fit a network packet
○ layer’s parameters (2MB) pre-configured in SmartNIC memory
○ execution takes 1 ms

G. Siracusano and R. Bifulco. 2018. In-network Neural Networks.arXiv preprint arXiv:1801.05731



Conclusion
● Analysis of suitability of current programmable network devices to work 

as NN accelerators
● BaNaNa Split: split the NN to execute computation-bound layers on CPU 

and offload memory-bound layers on a SmartNIC
○ Take advantage of a system’s heterogeneous components!
○ Free CPU for more compute-intensive tasks, improving the efficiency of the overall 

infrastructure

● Open points
○ NN quantization accuracy
○ Network device’s memory shared with classic network functions

15



Thanks!
davide.sanvito@polimi.it

16



Inference latency with image batching
● Improved efficiency
● fc layers get most benefit

○ IPC increases
○ Cache misses are reduced

● Increased mean response time

17



BNN fc execution

18



N2Net

19


