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Artificial Neural Networks (ANN)

e Machine Learning tool

e Sequence of interconnected layers of neurons

o Activation
o Hyperparameters
o MLP/CNN/RNN

e Training vs Inference
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Al accelerators

e General-purpose GPU (GPGPU)

Parallel computing on large amount of data (SIMD) | For latency sensitive

High efficiency with large batches services, NN inference
is performed on CPUs!

Data movement overhead

o Best suited for training _

e Tensor Processing Unit (TPU)

o  Custom ASIC dedicated to inference
o Data transfer up to 76% of processing time
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Our contributions

e Programmable Network Devices
o Network cards and switches
o More than pure forwarding
o Privileged position in an end-to-end system

e Profiling the computation required by a NN inference on a CPU
e Analysis of the options to offload (a subset of) NN's layers from the CPU to

a different processor
e Evaluating under which conditions NIC and switches are suitable to work

as CPUs co-processors for NN inference



Neural Networks inference workload

e NN inference workload in Google's data centers

NN Workload
MLP 61%
RNN 29%
CNN 5%

e Final portion of a CNN is a set of fc layers (MLP)

N. P Jouppi, et al. 2017. In-datacenter performance analysis of a tensor processing unit. 44th Annual International Symposium on Computer Architecture 5
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AlexNet

e CNN for image classification
e Winner of ImageNet Large Scale Visual Recognition (ILSVRC) 2012

input conv pool norm conv pool norm conv conv conv pool fc fc fc | prob argmax

MLP

A. Krizhevsky, et al. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems




Structural analysis
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Runtime analysis

e Testbed

o dual-socket (NUMA) machine with two CPUs Intel Xeon E5-2650 (8 cores@2.4GHz)
hyperthreading disabled

16GB of RAM per socket

L1 data and instruction caches: 32KB per core

L2 cache: 256KB per core

L3 cache: 20MB shared by all the CPU’s cores

e Intel Caffe running on a single isolated core on a dedicated CPU
e Total and per layer inference latency
e Linux perftool

o Instructions Per Cycle rate (IPC)

o Stalled cycles
o L1 (data), L2, L3 cache misses

o O O O O



Inference latency
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e conv layers processing is computation-bound
e fclayers processing is memory-bound

w

N
L3 cache misses

-




NN splitting

e (PUs are efficient executors for conv, pool and norm layers
e During fc layers, CPU's pipeline is stalled for a large fraction of time

e Moving the execution of fc layers to another executor can:

o reduce NN inference latency
o free CPU resources for a better suited workload
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NN splitting (2)

e NN execution has been splitted on two homogeneous executors
o  What's the impact of splitted execution on inference latency?

o  What's the communication overhead?
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NN splitting overhead
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BaNaNa Split
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NN is splitted just before fc layers
15t portion of the NN is run on CPU
Intermediate result is encapsulated in a packet

2"d portion of the NN is run on SmartNIC/switch
o NN quantization

e Final result is written in the packet
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PoC implementation

e BNN (Binary Neural Network)
o activation and parameters are represented with 1 bit
o bitwise logical operations and popcount only
e Extension of N2Net for network processor-based SmartNICs support
o compiler from BNN description to P4 program to configure an RMT-like switch pipeline
o popcount implementation leverages built-in support

e Micro-benchmark

o single binarized fc layer with 4096 neurons (fc6)
o activation vector and output (512B) fit a network packet
o layer's parameters (2MB) pre-configured in SmartNIC memory
o execution takes 1 ms
G. Siracusano and R. Bifulco. 2018. In-network Neural Networks.arXiv preprint arXiv:1801.05731 14



Conclusion

e Analysis of suitability of current programmable network devices to work
as NN accelerators

e BaNaNa Split: split the NN to execute computation-bound layers on CPU

and offload memory-bound layers on a SmartNIC
o Take advantage of a system'’s heterogeneous components!

o Free CPU for more compute-intensive tasks, improving the efficiency of the overall
infrastructure

e Open points
o NN quantization accuracy
o Network device's memory shared with classic network functions
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Thanks!

davide.sanvito@polimi.it
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Inference latency with image batching

e Improved efficiency g:tt::e ;‘;foc 1] 16 | 32 | 64
e fclayers get most benefit latency [ms] 9 | 1334 | 2724 | 5585
o IPCincreases ISequential proc. oz | 15 | . | e
o Cache misses are reduced atenhcyd[ms]
. Batched proc.
e Increased mean response time saving [%] = | 1315 | 1130 | 9.08
Batched proc.

saving fc only [%] - | 69.74 | 73.75 | 80.32

Batch 1 convd convs5  fc6

Batch 64 | 1 convd convs fc6
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BNN fc execution
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