On Optimization of Semi-Stable Routing in Multicommodity Flow Networks

Artur Tomaszewski¹, Michał Pióro¹ Davide Sanvito², Ilario Filippini², Antonio Capone²

¹Institute of Telecommunications, Warsaw University of Technology ²Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

International Network Optimization Conference INOC Avignon, France, June 12-14, 2019

network topology

- given: a regional packet network in an EU country with 47 routers and 140 directed 4Gb/s transmission links
- model: a directed graph $\mathcal G$ with a set of vertices $\mathcal V$ and a set of arcs $\mathcal E$; c(e) is the capacity of arc $e \in \mathcal E$

Problem

traffic measurements

	1	2		47
1		0.699		1.543
2	0.699			1.059
47	1.543	1.059		

- given: node traffic measured on Wednesday in 15-minute intervals: 96 inter-node 47x47 traffic matrices of interval-average bitrates (0.028Mb/s to 1712.044Mb/s)
- model: a set of time-points (intervals) $\mathcal{T} \equiv \{0, 1, \dots, T-1\}$, and a set of demands \mathcal{D} ; h(d, t) is the volume of demand $d \in \mathcal{D}$ at timepoint $t \in \mathcal{T}$

traffic routing

- task: to determine a set of paths for each demand, and for each timepoint the split of demands' traffic – fraction of the demand's volume assigned to each path
- model: $\mathcal{P}(d)$ is a set of allowed paths of demand $d \in \mathcal{D}$; variable $x_{dp}^t \in [0, 1]$ denotes the fraction of d's volume assigned to path $p \in \mathcal{P}(d)$ at timepoint $t \in \mathcal{T}$

performance metric

QoS metric is packet delay being a convex piece-wise linear function of link load:

$$z(w) \equiv \min \{x : x \geq a(k)w + b(k), k \in \mathcal{K}\}\$$

objective: to minimize the total (timepoint-wide and link-wide) network delay

$$\qquad \text{model: min } \big\{ \textstyle \sum_{t \in \mathcal{T}} \textstyle \sum_{e \in \mathcal{E}} z(w_e^t) : w_e^t = \textstyle \sum_{d \in \mathcal{D}} \textstyle \sum_{p \in \mathcal{P}(d,e)} h(d,t) x_{dp}^t / c(e) \big\}$$

semi-stable routing – cluster set

- too frequent routing changes affect network stability, and too many routing configurations increase network management cost
- routing cluster: set $\mathcal{U} \subseteq \mathcal{T}$ of consecutive timepoints that have the same routing configuration; starting timepoint $t(\mathcal{U})$, length $I(\mathcal{U})$, routing $x_{\mathcal{U}}$
- problem: to find a partition of \mathcal{T} into at most N=8 routing clusters, each of length at least L=8, that minimizes the total network delay

cluster's routing optimization - routing problem

$$RP(\mathcal{U}): Z(\mathcal{U}) = \min \sum_{t \in \mathcal{U}} \sum_{e \in \mathcal{E}} z_e^t$$
 (1a)

$$w_e^t = \sum_{d \in \mathcal{D}} \sum_{p \in \mathcal{P}(d,e)} h(d,t) x_{dp} / c(e)$$
 $t \in \mathcal{U}, e \in \mathcal{E}$ (1b)

$$\sum_{p \in \mathcal{P}(d)} x_{dp} = 1 \qquad \qquad d \in \mathcal{D} \quad (1c)$$

$$z_e^t \ge a(k)w_e^t + b(k)$$
 $t \in \mathcal{U}, e \in \mathcal{E}, k \in \mathcal{K}$ (1d)

$$x_{dp} \in [0,1]$$
 $d \in \mathcal{D}, p \in \mathcal{P}(d)$ (1e)

- an LP optimizing (stable) routing for a given single cluster \mathcal{U} : variables x_{dp} define a common split of traffic for all timepoints in \mathcal{U}
- merely, a link-path formulation of the multi-state capacitated multicommodity flow problem with a convex piece-wise linear objective function
- static routing: if solved for $\mathcal{U} \equiv \mathcal{T}$, $Z(\mathcal{U})$ is an upper bound of the optimal cost value of the semi-stable routing problem (and $\{\mathcal{U}\}$ is a feasible solution)
- dynamic routing: if solved for every single-timepoint cluster $\mathcal{U} \equiv \{t\}$, $\sum_{\mathcal{U}} Z(\mathcal{U})$ is a lower bound of the optimal cost value of the semi-stable routing problem

experiments and observations

- the routing optimization problem can be solved efficiently (it takes I(U) seconds on a laptop) using:
 - path generation and a shortest path algorithm
 - warm start for the master problem using the last basis
 - accumulation of generated paths throughout consecutive runs (clusters)
- combining routing optimization with cluster set optimization in one formulation requires introducing multiple sets of routing variables and additional coupling binary variables – it is not an LP any more, and is much larger
- we have tried a number of both exact and heuristic problem formulations combining cluster and routing optimization – they appeared too complex (even their linear relaxations)

observations

- there are just $O(T^2)$ potential routing clusters they have lengths between L and T-L and can start at any of T timepoints; moreover, a number of cluster's routing optimization problems can be solved in parallel on multiple processors
- however, with 5-minute measurement intervals and one-week-horizon T can be as large as 2016, whereas L equals 24 if routing reconfiguration after 2 hours is allowed
- we aim at networks with 100 through 200 nodes the size of the cluster's routing optimisation problem will increase more than 10 times, and the computation time much more

Solution

suggestions

- the semi-stable routing optimization problem should be decomposed into clusters optimization and routing optimization
- the routing optimization problem should not be solved for every potential cluster, and more than that - it should be solved for a small subset of clusters only
- question: how to couple the two problems?

clusters optimization – partitioning problem

$$PP(\mathscr{C}): Y(\mathscr{C}) = \min \sum_{t \in \mathcal{T}} y^t$$
 (2a)

$$\sum_{t \in \mathcal{T}} u^t \le N \tag{2b}$$

$$\sum_{0 \le k \le L-1} u^{t \oplus k} \le 1 \qquad \qquad t \in \mathcal{T} \tag{2c}$$

$$\sum_{t \in \mathcal{C}} y^t \ge G^{\mathcal{C}} \left(\sum_{t \in \mathcal{C} \setminus \{t(\mathcal{C})\}} u^t \right) \qquad \qquad \mathcal{C} \in \mathscr{C}$$
 (2d)

$$u^t \in \mathbb{B}, y^t \in \mathbb{R}_+$$
 $t \in \mathcal{T}$ (2e)

- a MIP with binary variables u^t decides if a routing cluster starts at t; there can be at most N starts in total and only 1 start in any set of L consecutive timepoints
- $\mathscr C$ is a family of control clusters and $G^{\mathcal C}$ is an approximation function that provides a lower bound of the total delay over cluster $\mathcal C$ such that $G^{\mathcal C}(0)=Z(\mathcal C)$
- ullet property 1: $Y(\mathscr{C})$ is a lower bound of the optimal semi-stable routing cost, and u^{t*} 's define a feasible solution and provide an upper bound of the optimal semi-stable routing cost
- property 2: if all clusters defined by u^{t*} 's are contained in the control family \mathscr{C} , they are an optimal partitioning of \mathcal{T} , and $Y(\mathscr{C})$ is its true cost

delay-lower-bound function

$$Z(C|1) \equiv \min_{\mathcal{U}} (Z(\mathcal{U}) + Z(C \setminus \mathcal{U}))$$

- $G^{\mathcal{C}}(m)$ is a lower bound of the total delay over control cluster \mathcal{C} when \mathcal{C} overlaps m+1 routing clusters, $m \leq M(\mathcal{C}) := \lceil \frac{l(\mathcal{C})-1}{l} \rceil$, such that $G^{\mathcal{C}}(0) = Z(\mathcal{C})$
- \circ G^C needs to be a convex piece-wise linear function with easy-to-determine coefficients
- we require that $G^{\mathcal{C}}(m) \leq Z(\mathcal{C}|m)$; e.g., it can be a convex envelope of points with values $Z(\mathcal{C}|0)$, $Z(\mathcal{C}|1)$, $Z(\mathcal{C}|\infty)$, which can be efficiently computed

basic method

8010 paths

Preprocessing	Branch-And-Bound	Postprocessing
$RP(C): 1 \leq I(C) \leq L+1$	$PP(\{\mathcal{C}\}): L \leq I(\mathcal{C}) \leq L+1$	$RP(\mathcal{U}^*)$
1h:7m:46s 3.33%	2s	1m:16s 0.25%

- preprocessing: solve $RP(\mathcal{C})$ LPs for all 964 (11%) clusters \mathcal{C} of size less or equal L+1=9, for which $M(\mathcal{C})=1$
- branch-and-bound: solve $PP(\mathscr{C})$ MIP; family \mathscr{C} consists of 192 clusters of length L=8 and L+1=9, and function $G^{\mathcal{C}}$ is based on $Z(\mathcal{C}|0)$ and $(Z(\mathcal{C}|1)$
- postprocessing: solve $RP(\mathcal{U}^*)$ LPs for all clusters \mathcal{U}^* that constitute the resulting partitioning $\{\mathcal{U}^*\}$
- large space for modifications: selection of control clusters sizes, selection of control clusters starting timepoints, definition of the bounding function, extension of the control family in a loop, etc.

Solution

extended method

48 incumbents / 32 user cuts

Preprocessing	BRANCH-AND-BOUND-AND-CUT	
$RP(C): 1 \leq I(C) \leq T/N$	$PP(\{C\}): L \leq I(C) \leq T/N \& RP(U^I)$	
2h:44m:45s 3.33%	8m:50s 0.0%	

- preprocessing: solve $RP(\mathcal{C})$ LPs for all 1, 152 (15%) clusters \mathcal{C} of size less or equal T/N = 12 (average size with N clusters)
- ullet branch-and-bound-and-cut: solve $PP(\mathscr{C})$ MIP generating cuts whenever an incumbent solution $\{\mathcal{U}^l\}$ is found; family \mathscr{C} consists of 480 clusters of length L=8 through T/N=12, and function $G^{\mathcal{C}}$ is based on $Z(\mathcal{C}|0)$ and $(Z(\mathcal{C}|1)$
- cut generation: solve $RP(\mathcal{U}^I)$ for each \mathcal{U}^I that does not belong to \mathscr{C} , and if its total delay is greater than the cost approximated by PP, reject the incumbent and add \mathcal{U} to \mathscr{C} by adding lazy constraints / user cuts

