\Orchestrating a brighter world N Ec

April 5th, 2022 - ACM EuroMLSys 2022

sysirn: Learning What to Monitor
for Efficient Anomaly Detection

Davide Sanvito, Giuseppe Siracusano, Sharan Santhanam,
Roberto Gonzalez, Roberto Bifulco

NEC Laboratories Europe

© NEC Corporation 2022

System monitoring based on logs

€ Monitoring software behaviour is a critical task in any operational system deployment

[reg—-*X] [instance: X] Attempting claim on node *: memory *X MB, disk X GB, vcpus X CPU

@ Logs track application state an

TIMESTAMP VERB COMPONENT LOG_MESSAGE

]
g =
o

2021-11-25 19:49:51.479 22191 INFO nova.compute.claims [req-dfdc8879-1710-44db-9acb-00927348ce05 ...] [instance: f6£318e3-3922-46d1-96df-3013a32acb77] Attempting claim on node c431: memory 512 MB, disk 1 GB, vcpus 1 CPUI
2021-11-25 19:49:51.479 22191 INFO nova.compute.claims [req-dfdc8879-1710-44db-9acb-00927348ce05 ...] [instance: £6£318e3-3922-46d1-96df-3013a32acb77] Total memory: 32010 MB, used: 512.00 MB

[oool

2021-11-25 19:49:51.481 22191 INFO nova.compute.claims [req-dfdc8879-1710-44db-9acb-00927348ce05 ...] [instance: f6£318e3-3922-46d1-96df-3013a32acb77] Claim successful on node c431

2021-11-25 19:49:55.799 22191 INFO nova. ute.manager [-] [instance: £6£318e3-3922-46d1-96df-3013a32acb77] VM Started (Lifecycle Event)

2021-11-25 19:49:55.827 22191 INFO nova. ute.manager [reg-acdc7c48-all8-43a7-90e4-cfbc870b8c2f - - - - -] [instance: f£6£318e3-3922-46d1-96df-3013a32acb77] VM Paused (Lifecycle Event)

2021-11-25 19:49:57.265 22191 INFO nova. ute.manager [req-acdc7c48-all8-43a7-90e4-cfbc870b8c2f - - - - -] [instance: f6£318e3-3922-46d1-96df-3013a32acb77] VM Resumed (Lifecycle Event)
[2021—11—25 19:57:15.231 22191 INFO nova.compute.manager [req-2684c5a4-30a7-4a5a-93d2-82929bb0a3e8 ...] [instance: f6£318e3-3922-46d1-96df-3013a32acb77] Attaching volume fl194clef-fcal0-4a36-8962-9d9%a8b06fbe to /dev/vdb]
[oool

2021-11-25 20:04:47.705 22191 INFO nova.compute.manager [-] [instance: £6£318e3-3922-46d1-96df-3013a32acb77] VM Stopped (Lifecycle Event)

[reg—-*X] [instance: X] Attaching volume * to X

@ Tipical steps for a log-based Anomay Detection system

M Correlation
M Parsing
B Anomaly Detection (AD)

¥ Observations

B Need app-specific knowledge, not re-usable
M Limited by when and what an application logs

2 \Orchestrating a brighter world N E'

Provenance Graphs

@ Graph capturing the relationships across OS-level entities

@ Based on monitoring of OS events (e.g. syscalls)

@ Observations
B Types and number of processes and their relationships disclose relevant information on the application
B Mostly used for security-critical services and for offline analysis
M Failure detection might require the monitoring of a smaller set of events

3 \Orchestrating a brighter world N E'
TS ASSS__—_—_—_—

syslrn

€® Complement these approaches with an alternative

M Little domain knowledge
B Independent from software developer practices
B Lightweight enough to be deployed in high performance scenarios

@ High-level design
B Offline phase: detailed monitoring to identify key indicators of normal behaviour
B Online phase: lightweight monitoring to verify the correct behaviour

4 \Orchestrating a brighter world N E'

Offline vs Online phases

@ Offline phase

M Build complete system behaviour graph
B Run graph analysis methods to identify relevant features

M Derive a model for normal behaviour

@ Online phase
B Monitoring based on Linux eBPF
M Collect only relevant features
B Driven by monitoring application’s external interfaces

B Perform Anomaly Detection

@ In this paper:
M Initial prototype of syslrn

i

Monitored Application

i i

eBPF

eBPF

‘os

...

os . |os

System’s state graph
sysirn

(expected behavior)

= featl
3

|S3pON Sainjeay

= feat0>x
= featl=y
. e

Offline Training Phase

Monitored Application

i

it it

‘eBI_’FV 1| | eBPF]
oS

osé

Online Inference Phase
sysirn
» Workload trigger

Fa|Iure?’

Features Model
Collection Check

B Graph analysis method: heuristic based on bag-of-components graph embedding and linear regression

M Tested with an use case based on OpenStack

\Orchestrating a brighter world N E'

Case study: OpenStack

€ Complex cloud management system

B Several modules (e.g. compute, networking, storage, etc)
M Interactions across modules and with third-party software

@ Instrumented testbed

B Common OpenStack operations

B Injection of realistic failures based on [1], extended to support
multiple workloads

@ Application graph example
M System background processes
M Application background processes
) Processes related to the handling of the service requests

nova-compute

[1] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, N. Bidokhti - How Bad Can a Bug Get? An Empirical Analysis of Software Failures in the OpenStack Cloud Computing Platform [ACM ESEC/FSE 2019]

6

\Orchestrating a brighter world N E'

Case study: OpenStack (2)

@ Offline phase

B Bag-of-nodes graph embedding: two types of features, instance counter and relationships counter

B Normal behaviour model: analyze the relationship between the features of the graph embeddings and the number
of service requests received using an heuristic

* Fit a Linear Regression (LR) model for each feature of the embedding
* Selects a subset of features based on a goodness-of-fit measure

B Features backtracking: map selected features to OS primitives required to monitor them

@ Online phase

M Collect selected features using eBPF programs
B Anomaly Detection periodically triggered to check them against the model of normal behaviour

* Based on an ensemble of LR models

7 \Orchestrating a brighter world N E‘
EEEEEEEEEEOSSSGSSSSSSSSSSSSSSSSSSEEEERRSSDSDSSSSESSEEE

Evaluation

@ Baseline

M Deeplog
B 3-Deeplog

€ Dataset
B 900+ experiments: failure free (FF) or single failure point in one OpenStack component
B One or more homogeneous workloads per experiment

M Collection of both application logs and OS-level events

€ Models

Recall (TPR)
E= Selectivity (TNR) N ——

M Training on FF data only

=

B Testing on FF and failures

@ Metrics
M Recall (TPR)
M Selectivity (TNR)

o0

7 7

Performance [%]

O O O O O
o
NN

o N B
|
N

DeeplLog 3-Deeplog SysLrn
\Orchestrating a brighter world N Ec

Monitoring overhead

@ We investigated the overhead of running OS-level feature extraction with eBPF

@ Benchmark based on Redis, a high performance key-value store that heavily relies on

communication

B OpenStack VM generation workload is unsuitable to perform a stress test

® redis-benchmark tool
B 50 concurrent clients

B No connection keep-alive

€ When logs are not required, for some
performance critical deployment syslrn
may provide a more efficient monitoring

alternative

Operation | Baseline | Log-based |eBPF program
(no mon) | monitoring |(w/ user code)

SET 48.8k | 17.2k (-64.73%) | 47.4k (-2.78%)
GET 483k |17.8k (-63.43%) | 47.1k (-2.61%)
LPUSH | 48.6k |17.2k (-64.51%) | 47.4k (-2.36%)
LPOP 49.7k |17.1k (-65.63%) | 48.6k (-2.19%)

redis-server throughput in req/s

\Orchestrating a brighter world N E‘

Conclusion

@ I|nitial prototype of syslrn
B Minimal set of functionalities
M Preliminary evaluation and deployment models

* Single use case with simplified subset of workloads
* Simplifying assumption (e.g. timing of features collection and anomaly detection)

@ Next steps
M Evaluation on larger set of applications to investigate benefits and limitations
M Extend syslrn with multiple graph representation and normal behaviour modeling methods

10 \Orchestrating a brighter world N E‘

Dataset available

March 24, 2022

syslrn: Learning What to Monitor for Efficient
Anomaly Detection [Dataset]

Davide Sanvito; Giuseppe Siracusano; Sharan Santhanam; Roberto Gonzalez; Roberto Bifulco
This repository includes the dataset for the paper:

D. Sanvito, G. Siracusano, S. Santhanam, R. Gonzalez, R. Bifulco
sysim: Leaming What to Monitor for Efficient Anomaly Detection
ACM EuroMLSys 2022

The dataset contains two directories at the root level.

+ raw_dataset
+ processed_dataset

Each folder in the raw_dataset directory contains the raw monitoring data used to generate the graph associated to a
single experiment together with additional metadata files.

Each folder in the processed_dataset directory contains the graph associated to a single experiment as a set of three CSV
files: two for the graph edges (pid_childof_pid_df.csv and pid_speakswith_pid_df.csv) and one for the graph nodes
(proc_df.csv).

We provide below a code snippet to parse a graph from processed_dataset directory.

In both folders the name of each sub-folder is based on the following schema: [SCENARIO]_[W]wi/test [TEST_ID] where:

« [SCENARIO] reports the target component for the failure injection (cinder_failure, neutron_failure, nova_failure). ff
indicates instead a failure-free execution

« [W] reports the number of concurrent workloads

« [TEST_ID] reports the ID of the specific failure scenario injected (same ID selected by the OpenStack failure injection
framework [1])

Each experiment includes the following data in the raw_dataset sub-folders:

« audit_raw_logs_[TEST_IDJ/: raw audit monitoring data

 bpf_tools_[TEST_ID}/: raw ebpf tools monitoring data

« instance-{INSTANCE_ID)/: workload-specific metadata files, e.g. stdout/stderr (generated by the OpenStack failure
injection framework [1])

« logs_workload_[TEST_ID)/: OpenStack application logs

« perf_tools_[TEST_IDJ/: raw perf tools monitoring data

« audit_filtered_[TEST_ID].log: audit data pre-processed by ausearch (e.g. numerical entities are resolved to symbols)

« failure_[TEST_ID].info: metadata information about the specific failure scenario (generated by the OpenStack failure
injection framework [1])

« timestamps_[TEST_ID]: timing information

[1] D. Cotroneo, L. De Simone, P. Liguori, R. Natella, N. Bidokhti - How Bad Can a Bug Get? An Empirical Analysis of Software
Failures in the OpenStack Cloud Computing Platform [ACM ESEC/FSE 2019]

Example: parsing a graph from processed_dataset directory

import pandas as pd
import networkx as nx

def parse_csv(path):
processes_df = pd.read_csv('ssproc_df.csv' % path, index_col=0).reset_index(drop=True)

speakswith_edges_df = pd.read_csv('%spid_speakswith_pid_df.csv' % path, index_col=0)
speakswith_edges_df['type'] = 'speaksWith'

childof_edges_df = pd.read_csv('%spid_childof_pid_df.csv' % path, index_col=0)
childof_edges_df['type'] = 'childof'

11

Pre-processed graph data

0 0

@ views & downloads

Raw monitoring data
B eBPF monitoring data

See more details.

Indexed in

OpenAIlRE

M Linux Audit monitoring data
B OpenStack application logs

Publication date:
March 24, 2022
Dol
Keyword(s):
e —"
Related identifiers:
References
10.1145/3517207.3526979 (Conference paper)

C)GitHub https://github.com/nec-research/syslrn-EuroMLSys22
20d0 https://zenodo.orqg/record/6374398

License (for files):
(Z Other (Non-Commercial)

Versions

Version 1

10.528

/zenodo 6374398

Cite all versions? You can cite all versions by using the DOI
10.5281/zenodo.6374397. This DOI represents all versions,

and will always resolve to the latest one. Read more.

Share
Cite as

Davide Sanvito, Giuseppe Siracusano, Sharan
Santhanam, Roberto Gonzalez, & Roberto Bifulco.
(2022). syslm: Learning What to Monitor for Efficient
Anomaly Detection [Dataset] [Data set). Zenodo.
https://doi.org/10.5281/zenodo.6374398

— SCAN ME

\Orchestrating a brighter world N E'

https://github.com/nec-research/syslrn-EuroMLSys22
https://zenodo.org/record/6374398

Thank you!

Davide.Sanvito@neclab.eu

12 \Orchestrating a brighter world N E'

mailto:Davide.Sanvito@neclab.eu

\Orchestrating a brighter world

NEC

